简介:1.铅资源化回收利用重要性废铅蓄电池的铅膏主要有PbO、PbSO4、PbO2等含铅化合物组成。从铅膏中回收利用铅,实现废铅蓄电池的资源化利用,不仅可以缓解铅资源日益锐减带来的问题,同时可以降低成本,减少环境污染,因此具有重要的意义。2.现有铅资源化回收利用的工艺及主要问题(1)火法:先将PbSO4转化为较易火法处理的化合物,同时将硫酸铅中的硫酸根转化为可溶于水的硫酸盐。该方法一般采用碳酸盐为脱硫剂,过程中产生大量硫酸盐副产物,必然存在硫酸盐的回收及利用问题,而且该工艺方法的铅回收利用率低,资源浪费及能量消耗大,存在环境污染问题。(2)湿法:利用溶解在溶液中的Pb2+在阴极还原生成金属Pb实现铅的回收。该方法作为环境友好型的铅回收方法备受关注,该方法存在的主要问题是采用阴极电沉积方法制备铅,操作单元多,工艺流程长,只在阴极发生有效反应,铅回收率低、能耗大、制备成本高。(3)火法-湿法耦合技术:将湿法铅膏转化与火法制备氧化铅耦合回收利用铅的工艺技术是较理想的工艺技术。该方法存在的主要问题的化学试剂消耗量大,有副产物产生。3.研发的新工艺为了克服现有技术的缺点,研发工艺合理、过程的安全可靠、原子利用率高、成本低的废铅蓄电池的铅资源化回收利用新工艺具有重要意义。以废铅蓄电池经过预处理得到的含PbO、PbSO4、PbO2的铅膏为原料,采用硝酸溶解-氨法浸取-分离精制-固液分离耦合技术分离铅膏得到PbO、PbSO4、PbO2产品。(1)首先,利用PbO易与酸反应,生成的产物易溶解于水的特性,以HNO3为浸取剂,PbO与HNO3反应生成可溶于水的Pb2+盐,将铅膏混合物中的PbO浸取到酸溶液中。回收溶于水的Pb2+盐,作为制备含铅化合物的原料,经过进一步处理得到PbO。(2)然后,以NH3·H2O-(NH4)2SO4为浸取剂,利用PbSO4�
简介:面向具有复杂分布式用电负载需求的航天器,提出一种基于三端口变换器(TPC)的供电系统架构及其功率控制策略。该系统以TPC为基本单元,通过将各TPC模块的输入端口和双向功率端口分别并联连接,实现输入能源、储能装置和多个分布式负载之间的供电。针对各分布式负载输出功率不同且单个TPC含有3条功率路径,可能导致系统中各传输路径功率不确定的问题,提出一种混合型系统功率控制策略以实现各模块各功率路径可控及系统功率优化管理,具体而言,即在储能装置充电工况下均衡储能装置的充电电流,在储能装置放电工况下按输出需求分配输入功率。分析和实验表明,系统可以在各工作状态下稳定运行并在各工作状态之间自由切换。