简介:对新型热电池阳极材料Li-B合金中的耐热骨架LiB化合物进行了晶体结构测定和形貌观察,获得了该化合物完整的X射线衍射谱线,经过XRD谱的衍射强度计算和电子密度函数分析,确定该化合物化学组成为LiB,属于六方晶系,空间群为No.194,晶格常数α=0.4022nm,c=0.2796nm;单中原子坐标B1(0,0,0),B2(0,0,1/2),Li1(2/3,1/3,0),Li2(1/3,2/3,1/2),理论密度d=1.50g/cm3,电子密度函数分析表明LiB化合物中Li原子的电子向B原子迁移,B原子之间有高密度电子云区,呈共价键特征,SEM观察结果表明,LiB化合物呈纤维状,合金经轧制后纤维沿轧向排列,X射线平板照相实验结果表明它具有丝织构特征,其衍射花样也与本结构模型计算结果一致。
简介:基于元胞自动机法耦合有限差分法原理,对经超声外场处理的7050铝合金熔体凝固组织进行微观模拟,研究施振功率和冷却方式对7050铝合金微观组织的影响,在实验验证的基础上,对超声细化晶粒的机制进行说明。模拟和实验结果表明:熔体经超声处理,凝固组织明显细化,组织形貌由枝状晶变为细小等轴晶,超声的空化效应和声流效应使得形核率增加是晶粒细化的主要原因;在实验功率范围内,超声功率为240W时晶粒细化效果最佳,此时晶粒的平均尺寸为72μm;超声细晶过程需要1个最短必要时间tmin,冷却强度低时,超声有效作用时间延长,晶粒的均匀化和细化程度增加。超声功率为200W时,改变冷却方式,随炉冷却方式所得晶粒最小,平均尺寸为82μm。
简介:高体积分数金刚石颗粒增强Cu基复合材料由于硬度高导致其难以加工成形。采用粉末注射成形制备多孔金刚石预成形坯和Cu熔渗相结合的工艺可以实现金刚石/Cu的近净成形。本文对经过表面镀铬再镀铜的金刚石粉末注射成形涉及的关键工艺,包括粘结剂的选择、注射成形工艺过程、烧结工艺等进行研究。结果表明,采用成分为70%石蜡+25%高密度聚乙烯+5%硬脂酸的粘结剂作为金刚石粉末注射成形的载体时,喂料具备优异的综合流变性能,同时可以获得较高的固相体积分数。采用上述配方的粘结剂,最佳的注射温度为165-175℃,注射压力为80~90MPa。脱脂金刚石预制坯最佳的烧结条件为:烧结温度1050℃,保温时间25min,此时坯体的强度达到10MPa,孔隙基本全部为开孔隙。
简介:在元素粉末反应制备多孔材料中,原料粉末粒度是影响其多孔结构的主要因素之一。本文通过元素粉末反应合成的方法制备Cu-Al多孔材料,研究原料粉末的粒径对Cu-Al多孔材料孔径、孔隙度、透气度和体积膨胀率等参数的影响。结果表明:Al粉粒径是影响Cu-Al多孔材料最大孔径的主要因素,材料的最大孔径dm与Al粉粒径dp之间严格遵循dm=0.48dp的线性变化规律;Cu粉粒径则对Cu-Al多孔材料最大孔径影响较小。当粉末粒径在48.5μm以上时,粉末粒径的改变对Cu-Al多孔材料的开孔隙度和总孔隙度影响不大。在实验研究范围内,Cu-Al多孔材料的体积膨胀率随粉末粒径的增大而增大;当粉末粒径很小时,Cu-Al多孔材料存在体积收缩的趋势。
简介:以氢化钛、氢化钇、氧化铁和Fe-Cr-W气雾化预合金粉末为原料,通过球磨得到Fe-14Cr-3W-0.5Ti-0.31Y-0.22O合金粉末,经压制、烧结制备出纳米氧化物弥散强化铁素体合金。采用激光粒度仪、XRD、SEM和TEM表征粉末和预烧坯的显微结构。研究结果表明,粉末粒径随球磨时间增加呈先增大后下降,冷焊主导变形机制向破碎主导机制的转变点发生在球磨24h。XRD谱显示氢化物和氧化铁均已溶解于铁素体基体,48h球磨粉末没有发现第二相粒子的存在。球磨48h后过饱和的Y、Ti、O铁素体固溶体在随后的加热过程中析出尺寸为5nm左右的弥散相颗粒,这种第二相粒子非常稳定,即使1200℃保温8h仍不发生明显长大,起着强烈钉扎位错的作用。
简介:以无水FeCl,和双硫腙为原料,通过溶剂热法得到分散均匀的棒状含铁前驱体,将该前驱体在400℃煅烧3h后制成管状氧化铁。X射线衍射仪(XRD)和环境扫描电镜(ESEM)的研究结果表明:所得管状氧化铁为六方相(α-Fe2O3,1的一维微米管,其平均直径约为2岬、长度约为10~20μm。傅立叶变换红外光谱仪(FT-IR)所测数据表明,该产物氧化铁表面吸附有部分SO42-离子;而紫外-可见光谱仪(uv-vis)的数据分析发现,其紫外最大吸收k。;约为489nm,带宽吸收约在566.2nm处,间接禁带宽度和直接禁带宽度分别为1.97eV和2.189eV,与文献报道值接近。
简介:采用厚20μm的非晶态Ti-Zr-Ni-Cu钎料,真空钎焊连接用于聚变堆面向等离子体部件的钨和铜铬锆合金,钎焊温度分别为860、880和900℃,对880℃下的钎焊样品进行热等静压(HIP)处理。采用SEM和EDS分析连接接头的形貌和成分,用静载剪切法测量焊接接头强度。测试结果表明在860~880℃下钎焊10min能够获得较好的连接界面,经880℃钎焊后焊接接头的剪切强度为16.57MPa,880℃钎焊后HIP处理的试样界面结合强度提高至142.73MPa,说明真空钎焊后HIP处理可以显著改善接头的结合强度。
简介:研究高能球磨制备Nb/Al化合物的工艺,探索在高能球磨过程中Nb、Al形成化合物的机理。结果表明,通过高能球磨可获得Al在Nb中的固溶体,固溶度与球磨转速和球磨时间成正比,并发现选用硬脂酸作为添加剂有利于Nb/Al的机械合金化。对高能球磨中机械合金化的机理进行了讨论,指出高能球磨产生的高比表面能和高密度晶体缺陷大大降低了整体的扩散激活能,使得在高温条件下才能发生的扩散和固溶反应在室温条件下也能进行。
简介:用溶胶-凝胶法制备镍锌共掺杂Z型锶钴铁氧体Sr3(NiZn)xCo2(1-x)Fe24O41(x=0~0.5)粉末。用X射线衍射(XRD)和扫描电镜(SEM)表征该铁氧体粉末的晶体结构和表面形貌,并测试其室温磁滞回线和室温电阻率。用微波矢量网络分析仪测定该粉末在2~18GHz微波频率范围的复介电常数和复磁导率,根据测量数据计算电磁损耗角正切及微波反射率,分析该材料的微波吸收性能与电磁损耗机理。结果表明:Sr3(NiZn)xCo2(1-x)Fe24O41粉末呈六角片状形貌,晶体结构为Z型,具有良好的软磁特性;x=0.3时该材料的电阻率最低,微波吸收效果最好,在13.5GHz频率的吸收峰为25.1dB,10dB频带宽度为7.7GHz,兼具强的磁损耗和弱的介电损耗。
简介:以大通量、大孔径的FeAl金属问化合物多孔材料作支撑体,在其上制备1层小孔径的同质FeAI多孔膜,得到均质FeAl金属间化合物多孔膜材料。采用SEM和孔结构测试,研究膜层厚度对FeAl多孔膜材料最终孔结构参数的影响,并对FeAl膜材料的高温抗氧化性能进行研究。结果表明:所制FeAl多孔膜材料表面平整,无裂纹等缺陷;随膜层厚度的增加,FeAl多孔膜材料的最大孔径、透气度均降低,相对十支撑体,膜厚为120pm时的最大孔径从11.7pm减小至9.3pm,透气度减小幅度为45.2%。FeAl多孔膜材料具有优异的高温抗氧化性能,经550℃循环氧化40h后,膜厚分别为120、180和260pm的试样的质量变化率仅分别为1.87%、1.25%和0.25%。