简介:草原鼠洞的识别定位可以为鼠害的监测、预测和防治等提供科学参考,因此,如何快速且准确地识别草地鼠洞成为亟需解决的问题。选取玛多县典型区作为研究区,利用可见光波段无人机影像,研究并建立了面向对象的模板匹配法和支持向量机法的草地鼠洞自动识别方法。模板匹配法是在多尺度分割的影像中选取不同种类的鼠洞对象并生成匹配模板,接着进行目标检测并产生初始结果,最后构建光谱、几何和纹理特征库对检测结果进行筛选。支持向量机法首先采集鼠洞训练样本并优化分类特征空间,然后采用支持向量机分类器监督分类得到鼠洞识别结果。对2种方法的识别结果进行精度评价与分析表明:2种方法的总体精度均较高,适用于三江源区草原鼠洞的精准识别。基于面向对象的模板匹配法比支持向量机法的总体识别精度整体高1%,错分误差低3%,识别效果较好。
简介:针对亚热带地区树种丰富,树种间相似度大对树种识别带来的问题,本研究以福建省三明市莘口镇格氏栲自然保护区附近13种常见树种的冠层实测高光谱数据为例,采用一种分层分析方法,探讨不同光谱类别的树种识别精度以及树种识别的最佳波段。首先,对原始光谱进行变换处理,包括一阶微分、二阶微分、对数一阶微分、包络线去除和植被指数;其次,通过分析选择出13种树种各光谱类别的差异显著波段;最后,利用逐步判别法对选择的差异显著波段进一步降维,判断不同光谱类别的树种识别精度并找出识别13种树种的最佳波段。结果表明:光谱变换能有效地提高树种的识别精度,尤其是对数一阶微分光谱,总识别精度高达98.7%;对于原始光谱,近红外波段(760~1300nm)的树种识别能力更强,对于变换光谱,可见光波段(350~760nm)的树种识别效果更佳;不同光谱类别之间具体的显著性差异波段存在很大差别,原始光谱与变换光谱之间仅在绿光波段(500~600nm)有少量相同的显著性差异波段,此研究成果可为亚热带地区树种识别提供参考。
简介:红树林是潮滩木本植物群落,其光谱和陆生植被极其相似。利用EO-1卫星ALI(advancedlandimager)获取的深圳湾区域影像数据,针对处于水分吸收带的波段5P和波段5,提出了这两个波段的角度指数(angleindex),分别表示为b1.25和b1.65。以b1.25-b1.65和归一化差值植被指数(normalizeddifferencevegetationindex,NDVI)分类特征,采用决策树方法,开展了红树林遥感识别实验。研究结果表明,红树林独特的滨海湿地特点,使得其像元反射率在波段5P和波段5明显低于陆生植被,从而导致红树林的b1.25-b1.65值明显大于陆生植被;通过结合b1.25-b1.65和NDVI分类特征的决策树方法,能够对红树林进行有效识别,其错分率和漏分率分别为4.29%和5.11%。因此,具有众多红外波段的ALI遥感器在红树林识别中能够发挥重要作用。