简介:设D=(y(D),A(D))是一个强连通有向图.弧集SA(D)称为D的k-限制性弧割,如果D-S中至少有两个强连通分支的阶数大于等于后.最小k-限制性弧割的基数称为k-限制性弧连通度,记作Ak(D).k-限制性点连通度Kk(D)可以类似地定义.有k-限制性弧割(k-限制性点割)的有向图称为λk-连通(kk-连通)有向图.本文研究有向图D的限制性弧连通度和其线图L(D)的限制性点连通度的关系,证明了对任意λk-连通有向图D,kk(L(D))≤λk(D),当k=2,3时等式成立;若L(D)是Kk(k-1)连通的,则λk(D)≤Kk(k-1)(L(D));特别地,若D是一个定向图且L(D)是Kk(k-1)/2.连通的,贝0Ak(D)≤Kk(k-1),2(L(D)).
简介:通过理论推导提出了一种评价高速流动PIV示踪粒子随流能力的松弛特性分析模型,在法向Mach数大于1.4时具有良好的适用性.将新模型应用于试验测量,发展了高速流动PIV系统和示踪粒子布撒技术,验证了高速流动PIV的定量化测量能力.针对空间发展的二维超声速气固两相混合层,数值模拟了不同Stokes数和对流Mach数(M_c)下的粒子跟随性以及弥散和迁徙运动,结果表明:相同对流Mach数,粒径越小的示踪粒子跟随性越好,Stokes数在[1,10]范围内的粒子有最大扩散距离.示踪粒子的直径大小决定其在超声速混合层大涡拟序结构中的分布特征,且粒径越小,气体与粒子的掺混越剧烈.相同粒径的粒子,对流Mach数越大跟随性越差.
简介:建立了一维p-laplacian方程(1)的一切解均为非振动的必要条件.所得定理改进了Kusano等在文[4]中的相应结果.
简介:研究了空间相机调焦机构的运动同步性误差对成像质量的影响。针对某型空间相机的大尺寸焦面调焦机构,分析了运动同步性误差产生的原因。按照其光学系统参数计算得出当系统光学传递函数下降不超过5%时,调焦机构运动同步性误差的最大允许值为0.02mm。针对其采用的调焦机构,推导出运动同步性误差计算公式,并计算得到该调焦机构的最大运动同步性误差为0.015mm。最后,对该调焦机构进行了实际测试。测试结果显示,该调焦机构的运动同步性误差在振动实验前后分别为0.012和0.013mm,表明该机构的运行非常稳定。理论分析以及实验结果证明了该调焦机构完全满足应用要求。
简介:系统综述了自19世纪开始至今常用的统计相关性的方法,例如Pearson和Spearman相关系数,CorGc和CovGc相关性及距离相关性方法。重点介绍了2011年提出的MIC方法以及由此引发的毁誉参半的大量评述,旨在揭示这一热点领域的研究面貌。该领域不仅受到统计学家的关注,而且受到了分析大样本和异质数据的应用研究领域的学者们的追捧,例如基因组生物学家和网络信息研究者。这些研究者期望在众多已有方法的理解和剖析中更恰当地付诸应用,并提出新的应用问题来推动新的分析方法的创造。