简介:介绍一种新型数值方法——向量式有限元的特点与应用.首先结合一个简单的悬臂梁算例,概述向量式有限元的基本原理和有关计算步骤,并将向量式有限元与传统有限元方法的不同之处进行了比较归纳,接着总结了该方法在工程研究领域的应用与发展现状,最后对该新型数值方法尚需完善的方面作了简单说明.既有研究表明,相比传统有限元,向量式有限元能更准确地分析和预测结构在大变形、断裂、碰撞情况下的各种行为,在结构火灾数值模拟、桥梁结构抗震、FRP约束混凝土构件性能模拟等许多研究应用领域都具有良好应用前景.向量式有限元可以作为研究者在研究相关问题时的一个有力工具,也可以为工程设计人员的设计提供一种更精确的手段.
简介:新型梁柱装配式节点通过在悬臂梁与框架梁的上、下翼缘交互处布置拼接板,并预先在钢结构加工厂里通过焊缝完成两侧拼接板与梁的连接,在现场通过螺栓进行固定的一种节点形式。利用有限元软件ABAQUS,考虑材料、几何和接触状态3种非线性对该新型节点进行低周循环加载模拟。设计了4组16个试件,研究螺栓数目、盖板宽度及厚度、悬臂梁段长度等参数对节点滞回性能的影响。研究结果表明,由等强设计法设计的基本试件延性和耗能能力较好,螺栓数量、盖板宽度及厚度、悬臂梁段长度对节点的承载力和延性均有一定影响;根据有限元分析结果,对该新型节点的设计给出了建议:使盖板的横截面积大于梁翼缘横截面积,其比值宜控制在1.05-1.30之间,悬臂梁段长度宜取1.7-2.0倍梁高。