简介:熵在描述随机系统的演变、不稳定性、无序性或混乱程度以及信息传递方面起着重要的作用.本文对非高斯噪声驱动的一类耗散动力系统的信息熵演化进行了研究,文中通过线性变换的方法简化了所研究系统的FPK方程,然后根据Shannon信息熵定义推导出了该耗散动力系统随时间演化信息熵的精确表达式,最后分析了非高斯噪声和系统耗散参数对系统信息熵的影响.
简介:研究了单自由度线性单边碰撞系统在有界随机噪声参数激励下系统的矩稳定性问题.用Zhuravlev变换将碰撞系统转化为连续的非碰撞系统,然后用随机平均法得到了关于慢变量的随机微分方程.利用伊藤法则给出了系统一、二阶矩满足的常微分方程,根据微分方程的稳定性理论得到了系统一阶矩稳定充分必要条件的解析表达式和二阶矩稳定充分必要条件的数值算法,并对理论结果用数值方法进行了仿真计算.理论分析和数值仿真表明,无论是相对于一阶矩还是二阶矩的稳定性,随着随机激励振幅变大,系统的稳定性区域变小从而使得系统变得不稳定.而当调谐参数趋于零系统达到参数主共振情形时,系统的稳定性区域变得最小.当随机噪声强度逐渐变小趋于零时,由二种矩稳定性给出的稳定性区域变得一致.在一定的参数区域内,随机噪声使得系统稳定化.
简介:对构造的单边碰撞悬臂梁系统进行实验的定性研究,在基础激励实验中,变换多次激励频率,通过加速度传感器测量悬臂梁测点的响应信号,并通过力传感器测量得到限位器与柔性悬臂梁之间的碰撞力.通过Matlab软件对实测响应的时、频域分析处理,观察到系统复杂的周期、概周期、混沌等多种运动形式,并发现其中运动形式变化的区间存在突变.尝试对实验时域数据计算最大Lyapunov指数,以进一步验证其中混沌的存在,进一步发现了混沌响应下末端加速度响应与碰撞力的传递函数具有频响函数特征.实验研究体现了非线性动力学现象,也对分析应用混沌运动的实验结果提供了一个新视角.
简介:研究了最新提出的超混沌吕系统的最优同步问题.利用哈密顿-雅可比-贝尔曼方程,对具有不确定参数的超混沌吕系统设计了最优同步的方案,分别得到了无限时间区间和有限时间区间上的最优控制器和参数控制律.数值仿真验证了理论分析的正确性.
简介:研究了高阶非完整系统的共形不变性与Noether守恒量,给出了与高阶非完整系统相应的完整系统的共形不变性的定义及其确定方程,通过系统共形不变性与Lie对称性的关系,推导出了系统运动方程具有共形不变性并且是Lie对称性的共形因子,利用限制方程和附加限制方程,给出了高阶非完整系统的弱Lie对称性和强Lie对称性的共形不变性,得到了共形不变性导致的Noether守恒量,举例说明了结果的应用.
简介:针对转子—轴承系统中滚动球轴承的动力学相似问题,提出一种考虑非线性振动特性的轴承系统相似模型建立方法.首先,建立滚动球轴承整体的非线性振动微分方程,运用积分模拟法推导了轴承整体的非线性振动特性相似关系,并结合滚动球轴承的动力学相似关系得到滚动球轴承系统的相似设计准则;其次,应用所得的相似准则,以深沟球轴承C204JUT为原型、6208为模型进行数值仿真实例计算,通过采用Newmark-β算法计算得到的分叉图分析了转速ω、径向载荷Fr、阻尼C及径向游隙γ大小对原型和模型轴承系统振动位移或速度响应的影响;最后,通过对比原型和模型的各参数(ω、Fr、C、γ)分叉图中分叉区间、趋于稳定运动参数值大小以及进入稳定周期运动时的稳态响应值大小验证相似准则的准确性和有效性.通过分析得到以下结论:1滚动球轴承非线性振动特性参数(如振动响应、结构阻尼等)相似关系可由轴承结构参数相似关系确定;2原型与模型非线性运动的分叉图形状一致,且模型能够很好的预测原型稳态振动响应,因此可将模型轴承用来预测原型轴承的非线性振动行为.
简介:根据三维混沌系统Lorenz吸引子和Chen’s吸引子线性部分的系数特征,构造了一个三维非线性动力系统,并研究了其混沌动力学特征,包括相轨迹图、最大Lyapunov指数、Lyapunov指数谱和Poincare映射,这些特征都表明,该系统具有混沌吸引子。
简介:研究了乘性噪声和加性噪声共同作用下含有两种不同时滞项的双稳系统中的平均首次穿越时间.首先通过近似方法得到了平均首次穿越时间的解析式,然后研究了乘性噪声强度、时滞量及噪声关联强度对平均首次穿越时间的影响.当噪声关联强度取正值时,平均首次穿越时间T1(x-→x+)是乘性噪声强度及两种时滞量的非但调函数,是噪声关联强度的单调递增函数.包含在确定力与振荡力中的时滞量分别影响T1(x-→x+)的最大值及对应的噪声强度.平均首次穿越时间T2(x+→x-)是包含在确定力中的时滞量的非单调函数,是乘性噪声强度、另一种时滞量及噪声关联强度的单调递减函数.