简介:轮胎作为车辆与路面接触的唯一载体,其力学特性是车辆动力学响应分析和控制的重要基础.目前仿真研究中所使用的轮胎模型多为稳态模型,不能精确地描述轮胎的动态特性.因此,将动态轮胎模型应用于车辆动力学仿真软件中,对于整车动力学仿真和研究具有重要的作用.多体动力学软件Adams中自带的轮胎摩擦模型为静态模型,它将摩擦系数视为一个静态值,而实际轮胎与路面之间的摩擦是动态变化的,应为相对速度和位移的动态函数,所以本文以基于LuGre动态轮胎模型,应用Matlab/Simulink软件构建动态轮胎模块,通过接口与Adams/Car连接,进行整车模型与Simulink轮胎模型的同步联合仿真,实现轮胎与路面动态接触的历程的模拟,提高车辆系统仿真的精度.
简介:随着航空航天事业的发展,对各种材料性能的要求也越来越高.而蜂窝夹层板在结构和性能上具有许多优点,已在航空航天等领域应用广泛,并在一些重要结构中充当承力部件,但由于其特殊的蜂窝结构,相对于一般的板,在受力时会发生比较大的变形,所以用非线性理论研究蜂窝夹层板结构,并考察不同参数对非线性振动特性的影响,具有重要的理论和实际意义.如今,蜂窝夹层板的几何非线性问题已引起更多学者的关注.在一般均质理论的假设下,一些学者已经研究了各项同性蜂窝夹层板板的非线性动力学特性.研究了一类受面内激励和横向外激励联合作用下的四边简支蜂窝夹层板在主参数共振-1:2内共振时的双Hopf分叉问题.首先利用多尺度法得到系统的平均方程,然后结合分叉理论得到了系统的分叉响应方程,根据对分叉响应方程的分析,得到了六种不同的分叉响应曲线并给出了系统产生双Hopf分叉的条件.利用数值方法得到系统在参数平面的分叉集,通过对不同分叉区域的分析发现,随着参数的变化系统平衡点会分叉为两类周期解,随后周期解会通过广义静态分叉为准周期解,或者通过广义Hopf分叉为3D环面.
简介:研究了一类参数激励和外激励联合作用下四边简支薄板在1:1内共振下的周期解分叉.首先,根据vonKarman方程推导出四边简支薄板的运动控制方程,利用Galerkin方法得到参数激励和外激励联合作用下的两个自由度的运动方程.然后,通过引入周期变换和相应的Poincar6映射推广了次谐Melnikov方法.最后,对系统进行数值模拟验证了理论的正确性.