学科分类
/ 3
49 个结果
  • 简介:首先研究了非线性随机动力系统所对应的Fokker-Planck-Kolmogorov(FPK)方程.其次,讨论了微分方程的三阶TVDRunge-Kutta关于时间的离散差分格式以及关于空间离散的五阶WeightedEssentiallynonOscillatory(WENO)差分格式,并将其相结合,得到FPK方程的TVDRunge-KuttaWENO差分解,并与FPK方程的精确解进行了比较.数值结果表明,该方法具有良好的稳定性,且可以解决其他方法在概率密度峰值处偏小,而在尾部处较大等缺点.

  • 标签: 非线性系统 FPK方程 有限差分法 TVD龙格-库塔格式 ENO格式 WENO格式
  • 简介:基于Poincaré映射方法对类两自由度碰撞系统进行研究.经过详细的理论演算得到单碰周期1/n的亚谐周期运动的存在性判据,并能精确地找到亚谐周期运动的初始位置.表明碰振系统的周期运动研究可以通过解析与数值方法的结合去实现.数值模拟表明了亚谐周期运动的存在性判据的正确性,并通过计算Jacobi矩阵的特征值可判断周期运动的稳定性及分岔.

  • 标签: 碰撞系统 亚谐运动 POINCARÉ映射 稳定性
  • 简介:对含有非线性时滞位移的vanderPol-Duffing方程进行了研究,着重研究了时滞参数对vanderPolDuffing系统Hopf分叉及极限环幅值的控制.首先采用摄动法从理论上推导出极限环幅值与时滞参数之间的关系,分析时滞参数对幅值大小的影响,并着重讨论了不改变振动频率情况下对幅值的控制.通过对零解的稳定性分析,得出Hopf分叉产生的条件.最后用数值计算的方法验证了理论计算结果,数值计算结果与理论结果相当吻合.

  • 标签: 摄动法 分叉控制 时滞动力系统
  • 简介:利用群论的方法研究系统的对称性,可以将对称系统分解为系列互相独立的子系统,使系统的H2和H∞控制可以在低维子系统上设计实现,从而减少控制系统设计中的计算量,这点对于大规模系统的控制尤其重要.简要介绍了利用系统对称性简化Lyapunov方程和Riccati方程的求解,以及计算控制系统的范数等几个例题,这些都是H2和H∞控制中常见的计算问题.

  • 标签: H2/H∞控制 群表示理论 对称系统 LYAPUNOV方程 RICCATI方程 应用
  • 简介:利用试探函数法,将个难于求解的非线性偏微分方程化为个易于求解的代数方程,然后用待定系数法确定相应的常数,简洁地求得了类非线性偏微分方程的精确解.将此方法应用到Burgers方程、KdV方程和KdV-Burgers方程,所得结果与已有结果完全吻合.本方法可望进步推广用于求解其它非线性偏微分方程.

  • 标签: 非线性偏微分方程 试探函数法 精确解 BURGERS方程 待定系数法 KDV方程
  • 简介:工程中存在着大量的具有迟滞非线性恢复力的结构与构件,但迟滞非线性系统既是非线性的,又是非解析的,造成其参数识别十分困难,阻碍了迟滞非线性模型在工程中的应用.本文提出了种基于小生境遗传算法的迟滞非线性系统参数识别方法,该方法在遗传算法中引入了新的参数——个体活动半径.利用本算法对木结构剪力墙的BW模型参数进行识别,识别结果误差较小,验证了算法的有效性。

  • 标签: 迟滞非线性系统 参数识别 遗传算法 小生境 工程力学
  • 简介:针对异步电机矢量控制需要实现定、转子电路解耦的个关键问题是准确地观测转子磁链.提出了种以异步电机在两相同步旋转坐标系下的定子电流和转子磁链为状态变量的基于滑模变结构思想的转子磁链观测器,对滑模变结构输入控制信号的设计使得滑模运动速度与轨迹和滑模面的距离相关联,并利用李亚普诺夫理论证明了算法的收敛性.通过仿真表明,该方法具有较高的转子磁链观测准确度,对转子电阻的变化具有很强的鲁棒性,能够改善异步电机矢量控制调速系统的动静态性能.

  • 标签: 异步电机 转子磁链 滑模观测器
  • 简介:研究了类参数激励和外激励联合作用下四边简支薄板在1:1内共振下的周期解分叉.首先,根据vonKarman方程推导出四边简支薄板的运动控制方程,利用Galerkin方法得到参数激励和外激励联合作用下的两个自由度的运动方程.然后,通过引入周期变换和相应的Poincar6映射推广了次谐Melnikov方法.最后,对系统进行数值模拟验证了理论的正确性.

  • 标签: 周期解 次谐Melnikov函数 周期变换 薄板
  • 简介:研究了类具有时滞及非线性特性发生率的SIRS传染病模型,首先利用特征值理论分析了无病平衡点和地方病平衡点的局部稳定性;并以时滞τ作为分岔参数,分析了模型的Hopf分岔行为,运用中心流形定理和规范型理论给出了分岔方向及分岔周期解稳定性的计算公式;最后,数值模拟验证了理论分析结果.

  • 标签: 稳定性 时滞 非线性发生率 阶段结构 HOPF分岔