简介:采用变物性格子Boltzmann通量求解器(VPLBFS)研究了Rayleigh-Benard热对流.以超临界流体为例,采用VPLBFS的简化形式和标准形式分别得到了通常关注的基于Boussinesq假设的常物性解,只考虑部分物性变化的基于partialBoussinesq假设的PBA解,以及考虑流体全部物性变化的变物性解,分析了non-Boussinesq效应对Rayleigh-B6nard热对流的影响,讨论了不同温差条件下的non-Boussinesq效应.研究结果表明:non-Boussinesq效应对超临界流体的Rayleigh-B6nard热对流有非常显著的抑制作用,论证了在研究热对流时考虑流体全部物性变化的必要性.
简介:为了提高水下航行器组合导航系统精度和可靠性,针对水下航行器组合导航系统量测噪声统计特性随实际工作环境的不同而变化的特点,提出了基于模糊自适应联邦卡尔曼滤波的水下组合导航算法。通过监测理论残差与实际残差的协方差的一致程度,应用模糊系统不断调整滤波器的增益系数,对子滤波器进行在线自适应调整,从而实现导航状态的最优估计滤波。通过对联邦滤波器信息分配系数模糊自适应调整,减少了滤波计算量,提高了滤波实时性。软件仿真实验结果表明:模糊自适应滤波可以有效地提高水下航行器组合导航系统的精度和可靠性,提高导航滤波实时性,克服传统的滤波算法的缺点与不足。
简介:对于具有一定机动能力的弹道式再入目标跟踪问题,稳定性好、鲁棒性强、收敛精度高的估计方法是保证跟踪精度的关键。针对再入运动模型和测量体制的强非线性以及目标机动引起的滤波精度下降问题,提出一种将强跟踪滤波(STF)和基于三阶球面-向径容积规则的容积卡尔曼滤波(CKF)相结合的强跟踪-容积卡尔曼滤波(STCKF)。通过将强跟踪算法中的自适应渐消因子引入到滤波时间更新和测量更新方程中,在线实时调整滤波增益矩阵,能有效避免模型失准造成的滤波性能下降,使该算法兼具CKF滤波精度高和STF鲁棒性强的优点。通过数学仿真表明,改进后的STCKF可以实现对具有机动的弹道式再入目标的高精度跟踪,相对于CKF精度提高50%,并且具有更强的鲁棒性和自适应能力。
简介:针对系统误差的不确定性可能会引起滤波精度降低或发散的问题,提出一种新的基于模型预测滤波的前向神经网络算法。首先,采用模型预测滤波估计网络在正向传递过程中的模型误差,并对其进行修正,以弥补模型误差对隐含层权值更新的影响;然后,利用模型预测滤波为神经网络提供精确的训练样本,学习待估计系统的非线性关系。将提出的算法应用于SINS/CNS/BDS组合导航系统,并与扩展卡尔曼滤波进行比较,仿真结果表明,提出的算法得到的姿态误差、速度误差和位置误差分别在[-0.25′,+0.25′]、[-0.05m/s,+0.05m/s]和[-5m,+5m]以内,滤波性能明显优于扩展卡尔曼滤波算法,表明该算法能提高组合导航定位的解算精度。
简介:爆震燃烧近似为等容燃烧,理论上其热循环效率高于基于等压燃烧的爆燃燃烧,在超声速推进系统中具有潜在的应用价值.通过总结超声速气流中的爆震推进理论与研究进展,分析其需要解决的关键科学与技术问题,指导未来高超声速发动机的基础研究.文章重点总结了适用于高超声速飞行的斜爆震发动机、超声速脉冲爆震冲压发动机的基础研究进展.其中对斜爆震发动机的应用模式、相关实验研究思路及方法、数值仿真现状进行了总结分析.对超声速脉冲爆震冲压发动机的基础理论研究现状和目前研究的难点进行了梳理.基于爆震燃烧的超燃冲压发动机具有推进系统自增压、燃烧效率高、推力性能好、推进效率高、燃烧室长度短、结构重量轻等优势,文章总结了该发动机当前的发展进程和最新的研究进展,并对其未来的发展方向以及存在的技术问题进行了分析.
简介:针对液压仿真转台伺服系统的非线性特点,提出了一种模糊控制与局部积分控制相结合的复合控制方式.当系统的偏差较大时主要采用模糊控制器对系统的偏差进行快速调节以加快系统的响应过程;当系统的偏差小于某一值时,加入积分控制以保证系统的精度.为了提高模糊控制器的性能,采用了规则可调整的模糊控制器.实验结果表明:该方法能有效地克服液压伺服系统的非线性和参数的不稳定性以及外部干扰对系统的影响,具有较高的控制精度和鲁棒性能,完全适合于液压仿真转台伺服系统的控制.
简介:针对SAR图像匹配及定位需要耗用不等的计算时间而造成的量测不等间隔输出和量测信息滞后问题,提出一种新的SAR时延补偿算法。该算法在标准卡尔曼滤波(KF)基础上,当SAR有量测信息生成时,根据多模型方法进行量测预测,利用预测值修正SINS状态;而SAR无量测信息输出时,通过插值方法生成量测信息来改善系统滤波精度。仿真结果表明,采用基于多模型量测预测的KF算法可以将位置误差由45m减小到10m以内,航向角稳态误差值小于5.8";而在此基础上叠加插值预测算法可以将位置误差进一步控制在6m以内,航向角稳态误差小于4.7",证明了本文提出的算法能够有效补偿SAR的随机时延并提高组合导航系统的解算精度。