简介:本文用临界点理论中的能量最小原理得到了一类具(q(t),P(t))-Laplacian项的二阶非自治系统存在周期解的充分条件.
简介:应用LeraySchauder不动点定理,研究了一类具时滞的Rayleigh型泛函微分方程:x″(t)+f(x′(t))+g(x(t-τ(t)))=e(t)的反周期解问题,得到了反周期解存在的新的结果。
简介:《微积分与概率统计—生命动力学的建模》(ModelingtheDynamicsofLife-CalculusandProbabilityforLifeScientists)一书的作者是盐湖城犹他大学数学系和生物系的教授FrederickR.Adler。CengageLearning下属的Brooks/Cole出版社于1998年出版了本书的第一版,2005年出版了第二版。北京理工大学的叶其孝教授等翻译了本书的第二版,中译本已于2011年由高等教育出版社出版。作者1984年毕业于哈佛大学(Harvard-RadcliffeCollege),获得学士学位,专业是数学。1987至1991