学科分类
/ 5
98 个结果
  • 简介:利用重合度理论和一些分析技巧讨论了一类具有时滞的非自治SIR传染病模型,得到了其周期解存在性的新结论.

  • 标签: SIR传染病模型 时滞 周期解
  • 简介:利用Orlicz空间内有关不等式技巧在Orlicz空间内研究了用三角多项式的倒数逼近周期可微函数的问题.得到了一个逼近定理及其推论.

  • 标签: 逼近 周期可微函数 三角多项式
  • 简介:利用重合度理论研究了一类三阶泛函微分方程x′′′(t)+multiplyfromi=1to2[a_ix~((i))+b_ix~((i))(t-τ_i)]+g_1(x(t))+g_2(x(t-τ))=p(t)的2π-周期解问题,获得了该方程2π-周期解存在唯一性的若干新结论.

  • 标签: 三阶泛函微分方程 周期解 重合度
  • 简介:在Banach空间中利用上下解方法与不连续增算子不动点定理,研究了含间断项和右端函数具有一阶导数项的二阶非线性常微分方程周期边值问题的最大解、最小解的存在性,推广和改进了现有的结果.而且对于有限维空间,我们获得的这些结果也都是新的.

  • 标签: BANACH空间 周期边值问题 上下解 增算子不动点定理
  • 简介:在时间尺度上,通过使用线性动力方程的指数二分法、不动点理论和微积分理论,研究带有泄漏项的中立型时滞细胞神经网络模型,获得了一些使其概周期解存在和全局指数稳定的充分条件,并将以前的结论在时间尺度上做了扩展.

  • 标签: 时间尺度 细胞神经网络 概周期解 指数稳定 中立型
  • 简介:以高等数学课堂教学为例,通过科学试验的方法分析数学建模思想渗入大学数学课堂教学对学生学习的影响力。通过精心设计教学试验,采集大量试验数据进行建模分析,结果表明,数学建模思想渗入高等数学课堂教学会对学生的学习产生积极影响,值得推广并长期坚持。

  • 标签: 数学建模 教学试验 科学试验方法
  • 简介:本文考虑了一类具时滞扰动的高维系统,利用不动点定理,建立了保证其撬周期解的存在性、唯一性和稳定性的充分性条件,推广了相关文献的主要结论.

  • 标签: 时滞 概周期解 存在性 唯一性 稳定性
  • 简介:利用重合度理论,研究了一类具多偏差变元高阶中立型泛函微分方程的周期解,获得这类方程至少存在和至多存在一个T一周期解的充分性条件,其中周期解的先验界估计与方程的滞量有关.文中的主要结果改进和推广了相关文献的主要定理.

  • 标签: 高阶中立型微分方程 周期解 存在性和唯一性 重合度
  • 简介:讨论了一类具有概周期系数的三种群第Ⅱ类功能性反应的模型,通过利用微分不等式及构造适当的李雅普诺夫函数获得了其存在全局渐近稳定性的概周期解的充分条件

  • 标签: 概周期解 全局渐近稳定 李雅普诺夫函数
  • 简介:主要利用较文献[4]更为简明的方法证明了有关有限域Fq(q为一个素数幂)上的以l为周期的n次不可约多项式的个数的结论。另外,本文结合结合初等数论知识得到了前面这个结论的几个推论,并对利用低次不可约多项式构造高次不可约多项式进行了研究。

  • 标签: 不可约多项式 本原多项式 极小多项式 周期
  • 简介:《微积分与概率统计—生命动力学的建模》(ModelingtheDynamicsofLife-CalculusandProbabilityforLifeScientists)一书的作者是盐湖城犹他大学数学系和生物系的教授FrederickR.Adler。CengageLearning下属的Brooks/Cole出版社于1998年出版了本书的第一版,2005年出版了第二版。北京理工大学的叶其孝教授等翻译了本书的第二版,中译本已于2011年由高等教育出版社出版。作者1984年毕业于哈佛大学(Harvard-RadcliffeCollege),获得学士学位,专业是数学。1987至1991

  • 标签: 不可多得建模 主导数学 动力学建模