学科分类
/ 11
208 个结果
  • 简介:在L,(1≤P〈∞)空间研究了板几何中一类带反射边界条件具各向异性、连续能量、均匀介质迁移算子的谱,证明了该迁移算子生成C0半群的Dyson—Phillips展开式的二阶余项在LP(1〈P〈∞)(L1)空间中是紧(弱紧)的,从而得到了该迁移算子的占优本征值的存在性等结果.

  • 标签: 迁移算子 C0半群 二阶余项 占优本征值
  • 简介:本文应用模糊数学理论,对城镇在区域经济发展中的地位进行了定量的综合评价研究,文中的实例分析表明该模型的建立与应用是有效可行的.

  • 标签: 模糊评定 隶属度 评定因子 评定等级
  • 简介:缅怀著名数学和数理科学家。我国函数论、数学物理和系统工程奠基人之一.纪念他的百岁诞生,回顾他在数学和数理科学的若干重要领域的开创性和奠基性工作。包括半(亚)纯函数与整函数函数理理论、准解析函数与函数逼近理论、微分方程解析理论与Minkowski-Denjoy函数理论、广义Reimann几何与混合量分析学、微分微分分方程与算子函数论、纤维丛积分与相对性量子场论、电磁风暴说与数理地震学、外微分形式与场论、各向异性能带理论与统计岩体力学、教学模型与自动控制、学科规划与人才培养等方面的巨大贡献,诗词书画与音乐艺术等方面的天赋与造诣;缅怀他严谨的治学态度和一贯的创新精神。

  • 标签: 李国平 数学 数理科学 系统科学 贡献
  • 简介:本文给出了2-连通图有Hamilton圈的又一个充分条件.定理设G为有n(n>3)个顶点的2-连通图,如果对G中任意两个顶点u、v,当d(u,v)=2时,都有max(d(u),d(v))≥n/2,则G有Hamilton圈.证用反证法.假设G没有Ham...

  • 标签: HAMILTON圈 2-连通图 最大性 连通性 充分条件 图论
  • 简介:在L^p(1〈P〈∞)空间上研究了板几何中具周期边界条件下各向异性、连续能量、非均匀介质的奇异迁移方程,证明了其相应的奇异迁移算子A产生C0半群V(t)(t≥0)和该半群的Dyson-Phillips展开式的二阶余项是紧的,并得到了该奇异迁移算子的谱在区域Г中仅由有限个具有限代数重数的离散本征值组成等结果.

  • 标签: 奇异迁移方程 周期边界条件 二阶余项 紧性 离散本征值
  • 简介:本文采用代数运算方法研究了一类五次系统的原点奇点量和可积性条件,并给出了该系统的15个基本Lie-不变量。

  • 标签: 五次系统 奇点量 可积性条件
  • 简介:令Hn(p)表示形如f(z)=zp+∑+∞k=π+pakzk,且在单位圆U=(z;|z|<1}内解析的函数f(z)的全体所成的函数类.本文应用微分从属技巧得到了p-叶β级星像函数的一些充分条件,所得结果推广了一些作者的相关结果.

  • 标签: 解析函效 p-叶函效 星像函效 从属
  • 简介:不要求非线性项f(t,u)连续且下方有界,在f(t,u)满足Caratheodory条件下,讨论了三阶半正边值同题{um+λf(t,u)=0,0≤t≤1,u(0)=u'(0)=u〃(1)=0.当λ>0且充分小时正解的存在性,应用的工具为锥上的不动点.

  • 标签: 三阶半正 正解
  • 简介:在局部凸空间中考虑约束集值优化问题(VP)在超有效解意义下的Lagrange最优性条件.在近似锥-次类凸假设下,利用择-性定理得到了(VP)取得强有效解的必要条件,利用超有效解集的性质及超有效解的定义给出了(VP)取得超有效解的充分条件,最后给出了一种与(VP)等价的无约束规划.

  • 标签: 超有效性 近似锥-次类凸性 集值优化
  • 简介:得到一个矩阵A与其特征多项式的友矩阵C相似的充要条件是对应于A的每个不同的特征值λi,Jordan标准形中只含有一个Jordan子矩阵,并给出证明.

  • 标签: 矩阵 友矩阵 相似矩阵
  • 简介:本文首先给出integralfromato+∞f(x)dx收敛≠lim+∞f(x)=0的一更强的例子,然后给出一个与级数收敛的必要条件类似的,integralfromato+∞f(x)dx收敛的必要条件。在许多工科高等数学教材中,广义积分敛散性的判别,一般都在级数中讨论,因而一部分同学和个别教师往往把级数的一些重要性质,直接推广到广义积分integralfromato+∞f(x)dx上。最典型的错误是把级数收敛的必要条件推广到广义积分上,即integralfromato+∞f(x)dx收敛?lim?+∞f(x)=0.这类错误较为普遍。

  • 标签: 广义积分 to x)dx 级数收敛 敛散性 被积函数
  • 简介:数列是高考的重点、难点,高考试题往往以数列题为压轴题对学生的思维能力进行全面地考察在数列问题中,不等关系的证明更是难点中的难点.证明数列中不等关系的方法常见的有:放缩、构造函数、数学归纳等但前两种方法技巧性太强,不好掌握,而后一种方法运算量庞大,难以实施到底本文介绍一种证明数列不等关系的有效方法:拆项

  • 标签: 数列不等式 拆项法 证明 高考试题 构造函数法 数学归纳法
  • 简介:《理科爱好者》98年第19期,笔者撰文“重视基础化难为易———再谈选择题的解法”,文中着重谈基础知识在选择题解法中的运用.本文着重谈用估计解选择题.通过对问题的仔细而深入地观察———包括认真审读题意并从题干和选择支中获取和挖掘出有用的信息,再对相关的数据或数学关系或图形作出估计,最后作出判断(选支),称为解选择题的估计.要掌握估计,有较扎实的基础知识和基本技能是其最重要的前提条件.首先看估计在有关方程中的运用.′99辽宁中考第9题(本文34题)下列方程中,无实数根的是( ).(A)x-1+1-x=0 (B)2y+6y=7(C)x+1+2=0(D)x2-3x+2=0由题干的条件,观察选择

  • 标签: 估计法 勾股数 中考选择题 二次函数 武汉市 实数根
  • 简介:向量是既有大小又有方向的量.向量可以进行运算(加、减法、数乘、数量积等),向量还有单位向量……与向量相关的内容有很多,常说向量是解题的有利工具,我们该如何很好地运用这个工具呢?把握向量的本质:向量的大小和向量的方向是关键.向量的大小可以用来求两点间的距离和点线距离等,向量的方向可以求角(线线角,线面角,面面角等).单位向量则可以求向量的坐标和点的坐标.

  • 标签: 向量法 几何问题 解析 单位向量 距离和 数量积
  • 简介:在数学解题过程中,用增量来解题是一种特殊方法,所谓增量就是对于两个实数a和b,如果a〉b,那么a=b+Δt,其中Δt〉0称为增量,增量就是通过增量元素的设定,利用换元来解答和处理数学问题的方法,下面就是从特殊的换元——增量元素的解题方法入手,在数学问题的解答过程中的几种常用的方法的运用.

  • 标签: 增量法 数学题 解题过程 数学问题 解题方法 换元法
  • 简介:借助坐标系,运用代数知识来研究几何图形的方法叫做解析解析的实质就是几何问题代数化,图形性质坐标化,利用解析几何中的列式运算代替几何中逻辑推理,从而减少几何证题中的一些困难从理论上说,所有几何证题均可使用解析,但在实施中有些计算量过大一般来...

  • 标签: 解析法 直角坐标系 几何问题 例谈 几何证题 图形性质
  • 简介:上接第2期)∵kAC=hb-a,∴高BE的方程为y=a-bh(x+a),令x=b得y=a2-b2h,∴H(b,a2-b2h).又过AC中点F(a+b2,h2)作AC的中垂线与BC的中垂线y轴相交于T,则中垂线TF的方程为:y-h2=a-bh(x-a+...

  • 标签: 解析法 例谈 中垂线 圆内接四边形 直角坐标系 点坐标