简介:本文致力于研究非线性中立型延迟积分微分方程隐式Euler方法的收缩性。本文中的Lipschitz数是关于变量t的函数,而不是常数,最终能得到其数值解的结果是收缩的。
简介:本文考虑索赔额与等待时间具有广义FGM相依结构的复合泊松过程,仿照文献[5]的方法,求出了其矩母函数的显式表达式,给出了其矩母函数的n阶导数的计算方法,并最终求出了其Esscher定价泛函.
简介:利用分段线性与三次Hermite插值基函数以及连续模概念,分别推导出分段线性与三次Hermite插值多项式序列一致收敛于被插函数.