简介:Aerojet公司得到俄罗斯登月计划使用的已经飞行验证的液体火箭发动机后,用现代仪器和控制把它改进成可重复使用和重复起动发动机,并用热试车验证了这些改进项目。NK—33液氧/煤油发动机是Samara州科学和生产企业“TRUD”(现称为N.D.KuznetsovSamara科学技术公司)为苏维埃N—1运载器设计制造的。该补燃发动机产生的高压(14.54MPa的室压)和高性能(真空比冲为3246m/s)是西方的烃类发动机从来也没有实现过的。Aerojet公司引进了36台NK—33发动机、9台NK—43发动机(N.D.KuznetsovSSTC同一发动机在上面级的翻版)。NK—33发动机改进后将首先用于KistlerK—1运载器。改进项目有:用电磁阎替换火药起动阀;替换推力和混合比控制用的机电起动阀;重新设计吹除供给系统;更换涡轮泵起旋和主燃烧室点火器的固体推进剂;为增加万向节和推力矢量控制架而重新设计更换机架。增加阀、火药起动器和管路以重新起动发动机,更换设备和电缆束。Aerojet对该发动机进行了成功的热试车,以验证新部件和结构,并开始研究可重复使用Kistler运载器上的发动机耐用性。本文描述了对原始俄罗斯发动机的改进项目,报道了至今为止的试验结果。
简介:阿丽安5型火箭的第二次和第三次鉴定飞行试验的成功是欧洲未来太空运输的一个重要里程碑;新型运载器和它的演变型将在后十年的航天发射市场占据领导角色.进一步的改进需要有突破性的设计概念变革;只有以部分或全部可重复使用性为基础,才可能降低成本:可以预计在2015年左右阿丽安5的后继型必定可重复使用.相应地,所需的几项新技术主要涉及气动热力学、先进结构和材料、可重复使用动力系统,健康诊断系统等.为此,ESA已建议未来运载器技术计划(FLTP)的目标是:确认运载器可重复使用性的优势;鉴别、开发和评估新一代低成本运载器研制所需的技术;精心编制地面和飞行试验与验证大纲,要求在运载器研制阶段和进一步进行验证试验之前可达到足够的置信度;通过分析候选的运载器方案及技术研究项目的综合。为拟于2007年启动的下一代运载器的欧洲研究计划的项目决策提供依据.FLTP的目的在于借助于三项中心工作解决以上问题:系统概念研究技术开发地面及飞行验证试验技术要求在对未来任何欧洲主要新型运载器研制作决定之前,第一阶段持续三年时间的一项两阶段研究计划将会获得对未来运载器系统构型、可行性和总体优势的清晰了解.
简介:近来,有关空间运输与研究可重复使用火箭各种需求的增加,世界各国正致力于降低费用与提高可靠性的工作。在美国,研制可重复使用火箭“冒险号”以替代航天飞机,其二分之一缩尺模型“X-33”计划1999年进行第一次飞行。在日本,计划研制可重复使用火箭(RLV)的主要依据是建立在H-2A火箭技术之上,在研制空天飞机型RLV前,先研制HOPE-X。计划研制的可重复使用火箭发动机是采用液氢/液氧、推力980.665~1961.33kN,并具有调节能力的发动机。发动机(包括液氢/液氧涡轮泵)的其他要求是工作寿命长,可靠性高。本文就可重复使用涡轮泵提出了一些关键技术。