简介:摘要:市政工程建设是我国政府基于服务百姓的重要责任而为居民改善日常生活所作出的努力的重要组成部分,是国家惠予百姓的重要民生工程,包括公路设施、给水排水管道等多种组成部分,从乡村到城市都有它们的身影,都对人们的生产生活产生着至关重要的作用与影响,对市政工程的高质量要求是当下经济社会高度发展的必然要求,也是政府的责任所系。对市政工程档案资料的管理指的就是管理施工单位在整个工程系统建设、安装与调试过程所产生的资料。市政工程资料的采集与管理涉及工程项目建设的全过程,具有随机性、分散性与复杂性的特点。科学的市政工程资料采集与工程档案过程管理有利于促进建设市政工程的社会效益与经济效益的双重实现,是市政工程建设的基础性工作,为工程项目建设的监管、验收与审计等工作提供了可靠性依据。资料与档案的管理对优化市政施工建设的整体质量,推动市政建设预期效益的实现具有重大意义。但是目前我国市政工程档案的采集管理存在多种短板,需要及时予以解决措施。因此市政工程档案管理的革新是推动市政工程建设适应新形势需要的必要途径。
简介:摘要:电力企业在经过长期发展已经实现了稳定持久的电力供应,并且在现阶段我国电力企业逐渐增多,电力市场也最开始的卖方市场,逐渐转变成了卖方市场,为保证电力企业能具有良好的发展前景以及发展规模,也就需要电力企业能通过有效的方式做好市场营销。而在目前的电力市场之中还存在着较多的问题影响着电力企业的营销效果。针对电力市场随机性、多变量和时变性的特点导致电力客户服务需求预测值不准确的问题,提出了一种基于大数据分析的电力客户服务需求预测方法。该方法依托于贵州地区的智能电网大数据,从区域商业价值和区域宏观经济角度来采集数据并通过挖掘其中的关联信息,建立了电力客户的细分模型;并在客户细分模型的基础上,使用BP神经网络算法建立了电力客户的需求预测模型。
简介:摘要:大数据时代已到来,数据量大且种类繁多,而信息相对匮乏。面对爆发式增长的数据,人们的理解能力远远跟不上数据增长的步伐,如果没有强有力的工具支撑,将很难发现数据中蕴含的信息。因此,我们采用数据挖掘和数据分析技术的目的就是为了实现数据到价值的转换。
简介:摘要:在大数据环境下,数据挖掘算法的优化变得至关重要。随着数据量的爆炸性增长,传统的数据挖掘算法面临着效率和性能的挑战。同时,云计算提供了弹性扩展的计算资源,为数据挖掘算法提供了强大的支撑。此外,内存优化和存储策略,如使用列存储和数据压缩,可以在不牺牲性能的前提下降低数据处理的内存需求。然而,大数据挖掘算法优化也面临着一系列挑战。数据安全和隐私保护是首要问题,尤其是在医疗或金融领域,数据的敏感性要求在算法设计时必须考虑数据加密和匿名化技术。同时,随着AI的普及,算法的可解释性和透明度受到关注,如使用可解释的机器学习模型以增强用户对预测结果的理解和信任。面对这些挑战,研究者和实践者需要探索新的算法结构和理论,以适应大数据环境并满足社会的期望。总结来说,大数据环境下的数据挖掘算法优化是一个持续演进的领域,需要综合考虑计算效率、数据安全、模型解释性等多个维度。只有这样,我们才能充分利用大数据的潜力,推动科学、商业和社会的持续创新。
简介:摘要:在大数据环境下,数据挖掘算法的优化变得至关重要。随着数据量的爆炸性增长,传统的数据挖掘算法面临着效率和性能的挑战。同时,云计算提供了弹性扩展的计算资源,为数据挖掘算法提供了强大的支撑。此外,内存优化和存储策略,如使用列存储和数据压缩,可以在不牺牲性能的前提下降低数据处理的内存需求。然而,大数据挖掘算法优化也面临着一系列挑战。数据安全和隐私保护是首要问题,尤其是在医疗或金融领域,数据的敏感性要求在算法设计时必须考虑数据加密和匿名化技术。同时,随着AI的普及,算法的可解释性和透明度受到关注,如使用可解释的机器学习模型以增强用户对预测结果的理解和信任。面对这些挑战,研究者和实践者需要探索新的算法结构和理论,以适应大数据环境并满足社会的期望。总结来说,大数据环境下的数据挖掘算法优化是一个持续演进的领域,需要综合考虑计算效率、数据安全、模型解释性等多个维度。只有这样,我们才能充分利用大数据的潜力,推动科学、商业和社会的持续创新。