简介:于复杂的数据库进行快速调度,不仅需要多服务器合作,同时也可能涉及多个数据库之间的数据筛选与查找,而问题的难点在于,不同的数据库在计算机语句设置方面也是不同的,这就意味着查询和筛选的规则以及具体的语言逻辑存在着差异性,这种差异也会影响数据有效调度的效率。基于以上问题,笔者提出一种新的数据库调度方法,其主要基于数据相互混沌的特征,实现复杂数据库的调度。通过并行数据调度技术与混沌优先级因子两种方式的有机结合投入到具体的寻优调度计算中,不仅能够快速将混沌特征进行获取,同时能够结合时间序列计算出具体的数据节点的任务量,最终建立优化模型。结果表明,这一改进模型对于复杂数据库的数据调度有一定的积极作用。
简介:针对目前超短期风速预测精度不高的问题,提出了一种改进样本加权的SVM超短期风速预测方法。对样本加权中基于距离函数的时间序列相似性度量方法进行改进,在欧式距离的基础上,加入区间变化趋势相似度函数,将欧氏距离和趋势相似度函数按权值组合,构造了新的相似性度量函数。对训练样本进行相空间重构,基于样本相似性因素对训练样本进行加权,建立加权SVM超短期风速预测模型。分别建立随机森林、梯度提升树、SVM以及改进加权SVM超短期风速预测模型,研究表明,对SVM进行改进样本加权后,可以将预测误差从7.61%降为7.46%,有效降低了超短期风速预测误差,验证了该方法的有效性。