学科分类
/ 4
77 个结果
  • 简介:迄今为止,啤酒的非生物稳定性依然是酿酒师需要重点考虑的问题,也是质量控制的重点。在研究影响啤酒浑浊的课题中,chapon提出的模式有一定的的指导意义。

  • 标签: 非生物稳定性 质量控制 啤酒 应用 n模 酿酒
  • 简介:从啤酒工艺过程可以看出,废水主要产生于设备和啤酒瓶清洗、麦糟、酵母排放等环节,主要成份有果胶、蛋白质等有机物和少量的无机污染物。这类废水的COD2、BOD8、悬浮物、总磷、氨氮等指标比较高,大量检测数据显示BOD/COD的比值在50%以上,可生化性较好,所以,去除COD2、BOD8等有机污染物,宜采用生化法处理。本文就“UASB升流式厌氧污泥反应+中间沉淀+SBR序列间歇式活性污泥法”在啤酒工业的应用方面作些介绍。

  • 标签: 序列间歇式活性污泥法 应用 沉淀 BOD/COD 无机污染物 有机污染物
  • 简介:选择适合的清洗剂和消毒剂,掌握其特性并正确应用到啤酒生产过程中,才能确保清洗和消毒的有效性。

  • 标签: 清洗 消毒 有效性
  • 简介:啤酒中的风味物质很多,已经检出的就有数百种之多。但对啤酒风味影响较大的通常有几十种,有些风味物质在一定含量范围内赋予啤酒特殊风味,但含量过高往往会给啤酒带来不良的风味影响。啤酒中不良风味除了与啤酒中存在的老化物质有关外,还与啤酒的生产原料、以及制造工艺有关。本文从啤酒感官品评效果到口味阈值、从形成原因到分析方法做了一些总结,以与行业内同仁们交流。

  • 标签: 啤酒风味 阈值 分析 控制
  • 简介:  1前言  1.1行动学习来源  行动学习法是英国RegRavens教授创建,二战后他受政府的委托,进行管理发展学术研究,70年代他为英国通用电子公司开办了行动学习课程,被广泛关注.专家们普遍认为这种方法可以与案例教学方法并列.……

  • 标签: 中的应用 包装成本 十步法
  • 简介:静态混合器的型号有很多种,我公司使用的是SV型。静态混合器的工作原理是让流体在管线中流动冲击混合器的波纹片,增加流体层流运动的速度梯度或形成湍流,层流时是“分割-位置移动-重新汇合”,湍流时,流体除上述三种情况外,还会在断面方向产生剧烈的涡流,有很强的剪切力作用于流体,使流体进一步分割混合,最终形成所需要的混合液。之所以称之为“静态”混合器,是指管道内没有运动部件,只有静止元件(如图1)。

  • 标签: 静态混合器 发酵液 试验 应用 层流运动 工作原理
  • 简介:本法采用固相提取(SPE)小柱提取和富集啤酒中的主要香味组成,处理后的啤酒可直接作毛细管气相色谱分析,以GC/MS对14种醇,酯,酸组分作了定性鉴别,采用内标法对其中的乙酸苯乙酯,己酸,β-苯乙酸,辛酸,癸酸等五种组分作定量测定,六次平行测定的PSD在3.9%-18.1%,加标回收率在91.4%-108.6%。本方法操作简便,快速,测定结果的重复性和准确度良好,可直接用于啤酒的质量控制分析。

  • 标签: 固相提取小柱 啤酒 香味 组分分析
  • 简介:选择尼泊金复合酯为研究对象,研究表明尼泊金复合酯对啤酒中常见污染菌大肠杆菌、变形黄杆菌、乳酸菌、醋酸杆菌和异常汉逊氏酵母、啤酒酵母均有明显的抑制作用,其中对酵母属和乳酸菌作用较强,MIC为12mg/L。尼泊金复合酯热稳定性较好,121℃30min仍具有良好的抑菌效果。在清酒中添加尼泊金复合酯能起到保鲜作用。

  • 标签: 尼泊金复合酯 污染杂菌 热稳定性
  • 简介:近年来,利用气相色谱-嗅觉测量法(GC-O)分析不同酒精饮料气味中单独组分的感官活性,以及气味与这些产物中挥发性化学组分相关性的研究有所加强。CG-O技术是一种基于色谱柱洗出液感官评价的技术。由于该仪器配有特殊附件,即所谓的嗅觉端口,使得定性和定量气味评价成为可能。嗅觉测量谱图形式取决于被分析物的分离程序和实验中所采用的定量方法。本文讨论比较了目前酒精饮料中最常用的几种样品预处理方法,包括溶剂法和非溶剂法,还讨论了几种定量方法,如检测频数法、稀释到检测闽值法和直接强度方法。研究重点主要集中在酒精饮料分析和质量评价中采用的分析技术。文中列举了许多研究样品,旨在确定挥发性化合物组分、含量以及产品(啤酒、葡萄酒和烈性酒精饮料)感官特性间的关系,同时比较和鉴别不同酒精饮料中的主要香味化合物及有害气味物质。

  • 标签: 气相色谱-嗅觉测量法 酒精饮料 气味 挥发性化合物
  • 简介:建立了啤酒中混浊活性蛋白质的提取制备方法和基于高效凝胶过滤色谱的蛋白质分析方法,对混浊活性蛋白进行了系统的分子量分布特点及定量分析,并将其应用在了啤酒非生物稳定性及啤酒样品分析领域高效凝胶过滤色谱法解决了混浊活性蛋白分子量及含量难以测定的问题,对啤酒生产蛋白质分子量的控制也具有重要的指导意义结果表明混浊活性蛋白的分布区间为23.4-150.0kDa、5.7-23.4kDa、1.0-5.7kDa和05-1.0kDa啤酒样品中蛋白质含量最高的分子量包括4.8kDa,2.4kDa,3.9kDa和128.8kDa方法相对标准偏差为03%-2.0%,不需混浊活性蛋白提取制备过程中的透析除盐处理,大大简化了操作流程方法简便快速,准确度高,重复性好最后应用该方法对啤酒稳定剂硅胶、酿造单宁和脯氨酸蛋白酶的作用效果进行了分析研究.结果显示硅胶主要去除0.5-1.0kDa,酿造单宁去除32.0-55.0kDa,而脯氨酸蛋白酶主要去除51.6-1500kDa部分蛋白质.

  • 标签: 高效凝胶过滤色谱法(HPGFC) 定量分析 啤酒 混浊活性蛋白 非生物稳定性
  • 简介:在2008~2009年,使用超高效液相色谱(UPLC)结合荧光检测法(FLD),对237种样品的啤酒大麦、麦芽、啤酒花、麦汁和啤酒进行了赭曲霉毒素A(OTA)污染的分析。相比于其他常用的方法,UPLC法是一种具有低检测限和定量限(LOD和LOQ)的快速检测技术。啤酒的LOD和LOQ值分别为0.0003nWmL和0.001ng/mL,大麦或麦芽为0.05μg/kg和0.2μg/kg,啤酒花为0.16μg/kg和0.5μg/kg。赭曲霉毒素A在其中一种大麦样品(0.3μg/kg),一种麦芽样品(0.7μg/kg)和一种啤酒花样品(0.6μg/kg)中被检测到,对啤酒酿造过程中的OTA含量也做了检测。此外,对从当地商店购买的国内外啤酒样品也进行了分析,OTA在其中的39%啤酒样品中被检测到,水平介于0.001~0.0544ng/mL之间,只有一个啤酒样品中OTA含量达到了0.2438ng/mL。

  • 标签: 赭曲霉毒素A UPLC荧光 酿酒 大麦 麦芽 啤酒
  • 简介:将来自嗜酸乳杆菌K1的胞外阿魏酸酯酶应用于糖化过程,以释放游离酚酸进入到麦汁中.该酶在生物反应器中制成,并部分纯化从而获得单酶.在52℃时,游离阿魏酸和香草酸释放到麦汁中(糖化醪中酶的用量为4.09-14.60U/L),在62℃能检测到阿魏酸(酶的添加量为14.60个单位/L).在26℃时,酶的任一浓度都能使游离P-羟基安息香酸和丁香酸得到有效释放;在52-74℃,游离的P-羟基安息香酸也能释放(酶使用量为14.60U/L);在26-52℃时,游离儿茶酸也能被酶制剂(酶用量为8.75U/L和14.60U/L)有效水解;起源于绿原酸的游离咖啡酸在26-62℃也能有效释放.在糖化过程中,虽有细菌酯酶的活性,但没有P-香豆酸释放出来.而由于其较低的热稳定性,在62℃或74℃时,嗜酸乳杆菌K1的阿魏酸酯酶不能释放酚酸.综上所述,嗜酸乳杆菌K1是一个很有前景的产生阿魏酸酯酶的来源物质,在糖化初期可用于抗氧化酚酸的释放.

  • 标签: 抗氧化剂 细菌 阿魏酸 阿魏酸酯酶 乳酸糖化 嗜酸乳杆菌
  • 简介:采用顶空固相微萃取-GC/MS技术,建立了啤酒中酒花香组分的分析方法,可以准确测定里哪醇、β-香茅醇、α-萜品醇、香叶醇、反式-橙花叔醇、乙酸香茅酯、香叶酸甲酯、乙酸香叶酯等8种酒花香组分。应用本方法测定了市售不同品牌啤酒的酒花香组分含量,通过统计分析并结合感官评定,评价了不同品牌啤酒的酒花香质量,本方法的建立有助于啤酒酒花香的量化评定。

  • 标签: 啤酒 顶空固相微萃取 气相色谱-质谱法 酒花香组分
  • 简介:<正>作为啤酒的主要原料,麦芽中的许多异味都会残留在啤酒中,过去酿酒师们注意到了因为焙焦温度不够而引起的生青味,近来酿酒师们又注意到了二甲基硫前驱体含量高所引起的二甲基硫味,但是,还有许多异味没有引起酿酒师足够的重视。我们也是在与用户的交流过程中,了解到麦汁品评的重要

  • 标签: 协定法麦汁 感官品评 啤酒 麦芽质量 闻香 口尝
  • 简介:2007年9月6-8日,中国酿酒工业协会啤酒分会技术委员会第三次工作会议在新疆召开。应出席技术委员38名,8名委员请假,30名委员参加了会议。会议由啤酒分会肖德润理事长主持。

  • 标签: 技术委员会 酿酒工业 啤酒 协会 中国 理事长
  • 简介:乙醛脱氢酶Ald6是啤酒酵母乙醛代谢途径的关键酶,它能催化乙醛脱氢,生成乙酸。设计引物,RT-PCR扩增得到啤酒酵母CRB2菌株Ald6基因,在大肠杆菌中进行克隆、表达、测序,并对表达产物的酶学性质进行了研究。结果表明,Ald6基因的大小为1503bp,编码的乙醛脱氢酶由500个氨基酸组成,与其它菌株的乙醛脱氢酶相比,核苷酸序列的同源性为7%-100%。乙醛脱氢酶以乙醛为底物时的Km值为28.14μmol/L,Vmax为98.03μmol·min^-1mg^-1,最适反应条件为15℃,pH8.0。中试酿造试验发现K^+、Mg^2+、Fe^2+对降低乙醛含量有显著作用。

  • 标签: 乙醛脱氢酶Ald6 KM DNA测序 表达