简介:人们建议,二氧化碳捕获与储存(CCS)足一种能够显著减少由于持续化石燃料使用所产生的温室气体排放的手段。对于地质储存晒言,从人规模点源(例如发电厂或其他工业)捕获二氧化碳,再把捕获的二氧化碳输送到注入场地,并注入到深部岩层储存。这将面临者新的用水挑战,例如在能源开发利用中的用水量以及水利用的“捕获代价”。在特定深度,咸水在地层中运移,而二氧化碳注入可导致储层压力增大,且二氧化碳泄漏对储层具有潜在影响。在潜在影响的范围内,从捕获增大需水量到泄漏或咸水运移造成地下水污染。了解这些潜在影响及其发生条件,以狄得适当监测与控制措施的设计与执行方案,这对于确保环境安全和统计口的而言足十分重要的。二氧化碳捕获与储存也可带来潜在利益,例如水处理与同时开采既可以抵消储层增大的压力,也可以供水。
简介:本文介绍了一种用于评估咸水层中超临界二氧化碳(CO2)注入引起的压力积累,以及在岩层开始破裂时极限压力的简易方法。利用Mathias等学者提出的近似解法计算压力积累。该方法主要用于评估可压缩多孔介质中的两相Forchheimer流(超临界二氧化碳和咸水),也可用于评估岩层和这两种液相的可压缩性。假定注入压力受岩层破裂所需压力的限制;假定在孔隙压力超过最小主应力时岩层发生破裂,这些将依次与岩层的泊松比有关。本文也提供了用于评估咸水和二氧化碳粘滞性、密度和可压缩性的详细指南。在平原二氧化碳减排(PCOR)合作计划文本数据中提供了这些计算实例。这种方法将有效用于筛选分析潜在的二氧化碳注入场地,以鉴别是否值得开展进一步调查。
简介:美国AppliedGeomechanics公司,研制成功了一种可评价水力裂缝尺寸,油层和井眼状况的水力阻力试井工艺。与常规的压力不稳定试井工艺相比,它具有施工速度快,成本低和安全系数大等优点。该工艺不需要昂贵的和不安全的井下工具,可获得现有工艺不能获得的资料,而且操作简单,可节省人力和降低设备成本。所需测量,只用一个井口压力传感器即可完成。水力阻力试井工艺是一种利用井眼共振来探测井下和地层状态的方法。井眼共振可用几何形状和横截而特征来描述。裂缝可强烈地影响井眼的共振形态,并产生频率和振幅特异的调制波。裂缝越大其影响就越大,裂缝的这一影响,可用一个称作"水力阻力"的参数来描述。操作过程为,关闭井口以引起
简介:犹他州地质调查局对犹他州西南部Escalante山谷内的5个地裂缝进行了勘查。2005年1月8—12日,在Escalante山谷突降一场强冬季暴风雪(可引起洪水)后,Escalant山谷内出现了地裂缝。洪水的渗透和层状冲刷(或片冲作用)扩大了地裂缝的范围。这些地裂缝长约100米(330英尺)至400米(1300公尺),而且在BerylJunction地区中部形成了一个不连续的长9千米的裂缝带(一般向北部延伸)。在某些位置,洪水侵蚀了裂缝并形成宽3米、深2米的冲沟。据当地居民描述,在洪水泛滥期间,洪水源源不断地流入地裂缝(持续时间1天或几天),并在地裂缝上部形成旋涡。布格重力数据显示,Escalante山谷是一个沉积物充填的盆地(以下简称充填盆地),其最深位置正好位于BerylJunetion东部。Escalante山谷也是一个农业耕作区,自20世纪20年代起开始从充填盆地含水层抽取地下水。监测结果表明,自从20世纪40年代以来,Escalante山谷的地下水位开始稳定下降。近年来,由于干旱,Escalante山谷地下水位的下降速率不断增加。BerylJunction南部地区地下水位的下降速率最大。调查结果显示,地裂缝的物理特性类似于在其他西部地区(由地下水开采和水位下降引起)形成的裂缝。这些地裂缝长与宽的比值(长宽比)较大,且大多数地裂缝是线性结构,可以在多种地层中出现并能够延伸相当大的距离。基于流入地裂缝的洪水总量,地裂缝的深度能够延伸至更大范围(甚至达到地下水位)。沉积层(含粘土)范围内的能够产生不同裂纹特征的地裂缝(例如干缩裂缝、水压实或地表断层)的其他可能的成因是震级较大的地震(大于6.5级)。此外,对Escalante山谷地面进行的高分辨率GPS勘查结果显示,在1941年-1972年期间,BerylJunction中部地区的地面局部下沉4英尺(1.2米),在�