学科分类
/ 1
2 个结果
  • 简介:故障树在设备的故障诊断中被广泛应用.当系统复杂度较大时,故障模式和故障树的分支会剧烈增加,故障现象和故障原因因此出现复杂关系,这必然给故障检测和诊断推理带来极大的困难.在故障诊断中引入一种新的人工智能方法,即蚁群算法,可以确定故障树的最优检测次序,并指导系统多故障状态的决策.由于该方法具有平行性、鲁棒性等特点,可以很好地解决前面所提问题.仿真结果显示,在故障树中采用该新方法可行、有效.

  • 标签: 蚁群算法 故障诊断 故障树 最优检测次序 故障模式 惯性导航设备
  • 简介:传统地形辅助导航适配区选择主要根据某一个地形特征参数的大小决定,因此不可避免地存在对地形适配性评判的不全面性。为了克服传统方法的缺点,提出了一种基于熵值法赋权灰色关联决策的地形辅助导航适配区选择方法,该方法综合考虑了地形标准差、粗糙度、地形高度熵及相关系数对适配区选择的影响。首先,利用计算得到的各特征参数值构建灰色决策矩阵;其次,对决策矩阵进行极差变换以及归一化处理得到灰色关联判断矩阵;最后,采用熵值赋权法客观计算各决策属性的权重,得到地形适配性综合评价指标。仿真结果表明,在评价值高的区域进行地形辅助导航,其匹配误差将更小。

  • 标签: 地形辅助导航 地形信息量 适配区 熵值法赋权 灰色关联决策