简介:为了解决当前工业仪表示数在采图环境恶劣和样本数据量大的情况下所导致的算法识别不准确的问题,分别从特征学习与机器学习识别的角度出发,提出了基于特征学习与支持向量机的工业仪表状态识别算法。首先,提取仪表图像区域字符的几何特征和颜色特征,对这些提取出的特征进行归一化处理,设计出特征提取分析算子,达到精准提取有用特征数据的目的。然后,基于支持向量机,计算出分类器的最优平面和约束条件,从而建立仪表识别算子,进一步精确识别仪表示数。最后,基于软件开发环境QT实现算法,并系统集成。实验测试结果显示:与当前仪表识别技术相比,此算法拥有更高的准确性与稳定性,能够准确地根据仪表数字识别出电压,从而确定仪表工作状态是否正常。
简介:采用ADI公司单片机ADuC845完成pH计的设计,采用双高阻差分输入法提高信噪比,同时应用DS18820一线温度传感器完成自动温度补偿,减小温度波动对测量的影响。结果表明:该pH计具有高的测量精度、稳定性以及抗干扰能力,能广泛满足测量的需要。