简介:分别以针刺编织预制体(2.5D)和三维编织预制体(3D)为增强体,采用化学气相沉积结合高温熔渗工艺制备2种不同预制体结构的C/C-SiC-ZrC复合材料。利用X射线衍射仪,扫描电镜和能谱分析仪等测试手段,对材料的微观结构进行分析,采用三点弯曲实验和压缩实验研究材料的力学性能,得出不同预制体对最终复合材料断裂性能的影响规律。结果表明:材料中的SiC与ZrC呈偏聚态分布,2.5D复合材料的弯曲强度和压缩强度高达147.38MPa,252.4MPa;与3D复合材料相比,2.5D复合材料强度分别提高了192%和90.7%。这主要是由于2.5D复合材料纤维含量少,孔隙多,反应后密度较高所致。
简介:以苯甲酸、邻苯二甲酸、间苯二甲酸、水杨酸、丙烯酸、甲基丙烯酸、α-噻吩基三氟甲酰丙酮为第一配体,二安替比林甲烷,三正辛基氧化膦、2,2'-联吡啶、邻菲咯啉及邻菲咯啉N-氧化物为第二配体,合成了系列铕三元配合物.经元素分析确定了它们的组成;研究了它们的紫外吸收光谱、红外吸收光谱及荧光光谱.紫外光谱的研究表明,配合物的紫外吸收主要表现为配体的吸收,但是吸收峰的位置发生了移动;红外光谱的研究表明,配合物的红外光谱不同于自由配体的红外光谱,在400~500cm-1出现了吸收峰,这是Eu-O的伸缩振动峰;荧光光谱的研究表明,第二配体的加入可以显著提高配合物的荧光性能.
简介:针对Al-Zn-Mg-Cu系铝合金热处理工艺中存在的不足,提出固溶-降温析出-再固溶的三级固溶热处理工艺,通过金相显微镜和扫描电镜(SEM)分析以及硬度、电导率、腐蚀剥落性能测试,研究三级固溶处理对Al-Zn-Mg-Cu系铝合金锻件的微观组织及剥落腐蚀行为的影响。结果表明:三级固溶处理可使晶界析出相明显粗化、离散度增大。同时,三级固溶处理可使Al-Zn-Mg-Cu系铝合金抗剥落腐蚀性能得到明显改善,抗拉强度仍能保持在610MPa左右;与常规固溶相比,该合金经三级固溶+峰值时效处理后的电导率由30.8%(IACS)提高到33.2%(IACS),抗剥蚀等级由EB^+提高为EA。
简介:采用座滴法研究反应烧结(Reactionbonded)SiC/Co-Si体系在真空中的润湿性及界面反应,并研究Si含量和实验温度对润湿角的影响。结果表明,元素Si对反应烧结(RB)SiC/Co-Si体系的润湿性有显著影响,当Co-Si钎料粉体中Si含量(质量分数)为6.7%和60%时,体系的最终润湿角都低于SiC/纯Co体系。SiC/Co-Si体系的润湿过程属于反应性润湿,随着温度升高,润湿角明显减小。微观结构研究和XRD相分析表明,对于SiC/Co-3Si体系(Co-3Si钎料中Si的质量分数为3%),界面区域发生了化学反应,反应产物为CoSi和碳,同时发生元素的互扩散,形成反应中间层;对于SiC/Co-60Si体系,界面反应产物只有CoSi2,界面区域没有存留碳。界面反应改变体系的界面结构,从而改善体系的润湿性。
简介:以溶胶-喷雾干燥-热还原制备的纳米晶W-Cu复合粉末为原料,通过球磨改性、叠层压制和一步液相烧结分别制备3种两层梯度复合细晶W-Cu材料(W-10Cu/W-30Cu,W-20Cu/W-30Cu和W-30Cu/W-50Cu),对其致密度、组织成分特征及界面结合性能进行研究与分析。结果表明:3种梯度材料各均质层都达到高致密(相对密度〉98%);梯度材料具有明显的梯度组织,界面结合完好,Cu相呈连续网状结构,包裹在均匀分布的细小W晶粒周围;成分呈阶梯式变化,各层成分因Cu相的迁移和流失与初始设计值有一定的偏差;材料力学性能呈现梯度性,界面显微硬度处在两层显微硬度之间,结合强度高于各自富Cu层的拉伸强度,表明纳米复合W-Cu功能梯度材料各成分层之间有着优良的结合性。
简介:微波合成因合成速度快、清洁和能效高而成为一种非常有前途的材料制备方法。与常规方法相比,很多材料可以在相对较低的温度和较短的时间内用微波加热合成。该文作者利用混合微波加热技术,在短时间内由镁粉、镍粉和石墨粉合成了具有立方钙钛矿结构的金属间化合物超导材料MgCNi3。利用微波加热合成的MgCNi3,镁的挥发和氧化程度明显减少。粉末X射线衍射显示合成的样品主相为MgCNi3,还含有少量未反应的石墨粉和微量的MgO杂相。金相显微镜和扫描电镜观察表明超导样品的晶粒大小一般为2~6μm。由标准的四探针电阻方法和磁测量技术测得样品的超导起始转变温度为6.9K,转变宽度约为0.8K。
简介:采用金属粉型药芯焊丝自保护明弧焊制备Cr9Mn6Nb2WVSiTi奥氏体耐磨堆焊合金,借助XRD,SEM,EDS及光学显微镜研究外加WC颗粒对其显微组织及耐磨性的影响。结果表明,随焊丝药芯中WC增加,奥氏体晶粒细化,沿晶分布的多元合金化碳化物数量增加。初生γ-Fe相原位析出了(Nb,Ti,V)C相和残留WCx颗粒,起到晶内弥散强化作用,沿晶分布的(Nb,Ti,V)C和M6C(M=Fe,Cr,Mn,V,W)相隔断了网状或树枝状的沿晶M7C3相,使其细化、断续分布而提高合金韧性,减轻沿晶碳化物数量增加的不利影响。硬度和磨损测试结果显示,明弧堆焊奥氏体合金洛氏硬度仅为40~47,但其磨损质量损失低于高铬铸铁合金,具有良好耐磨性;随外加WC含量提高,奥氏体合金晶内和晶界显微硬度差异显著减小,合金表面趋于均匀磨损而改善耐磨性。该奥氏体合金的磨损机制主要是磨粒显微切削,适用于带有一定冲击载荷磨粒磨损的工况下使用。
简介:采用选择性激光熔覆法,在基板温度分别为100,150,和200℃条件下制备M2粉末高速钢合金,分析基板温度对合金组织结构与力学性能的影响。结果表明,基板温度升高有利于提高M2粉末高速钢的致密度和整体组织的均匀性。当基板温度为200℃时,高速钢组织均匀致密,各元素固溶程度高,且碳化物含量高,组织中柱状晶不再沿Z轴方向单一生长,同时合金的显微硬度(HV0.1)达到最高,HV0.1为1150,相比基板温度为100℃时的合金提高近40%。随基板温度从100℃升高到200℃,沿Z轴打印的M2高速钢室温抗拉强度从865.23MPa降低到443.85MPa,主要原因是合金中单一方向的柱状晶数量减少。