简介:P2P网络借贷作为电子商务在金融领域的延伸与应用,近年来得到广大学者的关注.但是目前的理论研究中,鲜有从投资者信息挖掘的角度进行投资决策分析.本文提出一个新颖的方法,即投资者构成分析方法,通过分析贷款的众多投资者信息遴选出最有价值的投资,辅助投资者进行投资决策.首先从投资者的历史投资收益率、风险偏好以及投资经验三个维度构建投资者档案(investorprofile),进而基于投资者档案构建投资者构成分析模型,最后通过美国最大的在线网络借贷网站Prosper的数据,对本文提出的构想及模型进行了实证研究.实验结果表明本文提出的利用投资者构成分析的方法辅助投资者进行投资决策是可行的,文中构建的模型表现出良好的预测能力,能够有效地筛选出有价值的投资.
简介:引入一个修正的Mann迭代序列,并在Hilbert空间和Banach空间中证明了此迭代序列强收敛于有限蔟多值Φ-伪压缩映像的唯一公共不动点.