简介:研究一致凸Banach空间中集值渐近拟非扩张映射的关于有限步迭代序列逼近公共不动点的充分必要条件,并在此条件下,证明了该序列收敛到公共不动点的一些强收敛定理,所得结果是单值映射情形的推广和发展.
简介:设A是一个每列至少有二个元素为1的不可约0,1方阵,(∑A,σA)为由A所决定的符号空间有限型子转移.在∑A上定义一个与其拓扑相容的度量d使得(∑A,d)的Hausdorff维数为1.若C是H1可测的σA的LiYorke混沌集,则H1(C)=0;若A是本原的,则存在一个σA的有限型混沌集S使得H1(S)=1,其中H1为1维的Hausdorff测度