简介:大型柔性空间结构的振动控制问题引起了广泛的关注.压电材料以其低质量、宽频带和适应性强等特点,非常适合于柔性空间结构的振动控制.本文针对上下表面粘贴有分布式压电传感器和作动器的智能层梁结构,提出了一种考虑压电材料对结构质量、刚度影响的高阶有限元模型.考虑到空间结构可能承受较大的热载荷,在模型中计及了压电材料的热电耦合效应.采用常增益负反馈控制方法、常增益速度负反馈控制方法、Lyapunov反馈控制方法和线性二次型调节器方法(LQR)设计主动控制器,实现了智能层梁结构脉冲激励下的振动主动控制.仿真结果表明,LQR方法更能有效的实现结构振动控制,并且具有更低的作动器峰值电压,但不能消除热载荷引起的结构静变形.
简介:针对地球静止轨道空间碎片清除需求,开展了服务星通过绳索拖拽空间碎片离轨多体动力学与控制仿真研究.分析了在轨拖拽期间系统拓扑构型,采用递推方法推导了考虑地球J2摄动的服务星和空间碎片柔性多体动力学方程组,建立了基于集中参数法的绳索动力学模型,通过约束方程将绳索与服务星和空间碎片相连接,建立了服务星姿态控制力矩方程,最后形成了服务星在轨拖拽空间碎片期间柔性多体系统多体动力学方程.通过悬链线模型与本文采用的集中参数模型的比较验证了本文采用的柔性绳索模型的正确性,然后通过数值仿真分析了与服务星质量接近的空间碎片被拖动期间动力学特性,为这类航天器总体设计及空间碎片清除策略制定提供了参考依据.
简介:根据Rumyantsev提出的Poincaré—Chetaev变量下的广义Routh方程.用无限小变换的方法研究它的对称性与守恒量,得到守恒量存在的条件和形式.该结果比以往的Poincaré—Chetaev方程的相关结论更一般.最后.举例说明结果的应用。
简介:使用Chebyshev-Gauss(CG)伪谱法研究带动量轮和推力器的欠驱动航天器姿态最优控制问题.基于欧拉姿态角和动量矩定理导出两类航天器姿态运动模型,采用Clenshaw-Curtis积分近似得到性能指标函数中的积分项,应用重心拉格朗日插值逼近状态变量和控制变量,将连续最优控制问题离散为具有代数约束的非线性规划(NLP)问题,通过序列二次规划(SQP)算法求解.数值仿真结果表明,对两类欠驱动航天器的姿态机动最优控制均能达到设计控制要求,得到的姿态最优曲线与验证得到的曲线几乎完全重叠.
简介:研究了高阶非完整系统的共形不变性与Noether守恒量,给出了与高阶非完整系统相应的完整系统的共形不变性的定义及其确定方程,通过系统共形不变性与Lie对称性的关系,推导出了系统运动方程具有共形不变性并且是Lie对称性的共形因子,利用限制方程和附加限制方程,给出了高阶非完整系统的弱Lie对称性和强Lie对称性的共形不变性,得到了共形不变性导致的Noether守恒量,举例说明了结果的应用.