简介:对于砂贯入岩在油气储层中的分布已有越来越多的描述,在深水碎屑岩层系中尤为如此。现已获悉,砂贯入岩对深水碎屑岩的油气储量分布和采收率都有影响。地震能检测的贯入砂体是勘探和开发井的布井目标,而地震不能检测的贯入砂体可以成为储层内良好的流动单元,在广泛沉积的低渗透率层位形成油气田范围的垂向流体通道。由于砂贯入岩能在渗透率原本很低的层位形成渗透性通道,所以有利于盆地流体的排出。正因为如此,砂贯入岩既能产生封盖层的风险,也能缓解对油气运移时间和速率方面的要求。贯入砂体可形成不同于构造或地层圈闭的侵入圈闭。这种圈闭的储层一般都有良好的性能,同时不同规模的砂体之间也有很好的连通性。就油气开采而言,砂层的贯入提高了波及效率,但如果生产并离贯入岩体太近,也会使见水时间早于预期。尽管有北海地区的经验,但对于砂贯入岩及其在全球含油气盆地的意义还处于认识的初级阶段。
简介:在1999年春天,BurlingtonResources公司开始对圣胡安盆地Lewis页岩层段的压裂增产措施进行研究,目的是确定液态CO2加砂压裂(干压)作业在Lewis页岩中的可行性,并比较液态CO2加砂压裂与用水基系统压裂油井产量的变化。通过产量对比和试井资料定量评价干式压裂技术的压裂效果。Lewis页岩分布于整个圣胡安盆地,是深度大约为4000ft的Mesaverde组中的一部分。在1999年压裂处理的井中,有26口井采用了液态CO2加砂压裂技术,这是一种无水增产措施。其余的井(46口)则用氮气泡沫水基液体进行压裂。先前对Lewis页岩层段的研究工作认为当凝胶液进入低渗透且具有天然裂缝的地层中时,能引起渗透率的降低。通过采用干式压裂方法采用无水基液对Lewis页岩层段进行压裂和支摔可以消除或减少对天然或人工裂缝的渗透率的伤害。
简介:在北海许多古近系深水砂岩的附近都发育了大规模的砂贯入复合体,它们可以模拟为是通过单期的砂子液化体贯入裂缝中并在海底挤出的。大规模岩墙贯入和挤出所涉及的能量至少为10^13J数量级,而这些能量主要用于推升巨大数量(3.1×10^11kg)的颗粒物质和流体。还有少部分能量是作为摩擦效应而消耗的。据计算,海底出口点的流动最初是紊流,速度大约为每秒十分之几米,并且随时间而减小。对这个过程进行的动力学评价可以分析可能的触发机理,并为母岩砂体初始液化的功能提供支持。地震有可能释放埋藏期间这些砂复合体液化和贯入所需的能量,但在古近纪北海这样的热沉降盆地并不常见。因此,这一过程所需的孔隙流体很高超压可能是由流体流入造成的。
简介:本文是介绍如何应用智能井系统与完井的结合来控制深海区的油藏流入。在深水海底,远程控制水流入的能力可以免除成本很高的钻井平台维护作业,同时能延长油井的寿命并增加可采储量。在巴西深水海域,具有机械裸眼隔离的裸眼水平井砾石充填完井都已与完全可靠的电子智能井系统结合在一起。本文将详细介绍这些技术的设计、测试和实施。巴西深水海域仍然是迫切需要为提高经济效益而推动新技术应用的地方。1998年在巴西深水海底实施了水平井砾石充填完井。到目前为止,已对生产井和注入井成功实施了52次海底水平井的砾石充填。为了进一步提高深水区的经营效益,于1999年开始在坎普斯(Campos)盆地实施5级多分支井。由于裸眼水平井砾石充填的成功不断显示出经济效益,有必要提供一种与砾石充填相结合的有效层位分隔。2001年在坎普斯盆地成功应用了可获得层位分隔的分流阀技术。水平井的层位分隔和长水平距离使油田经营者能够选择性地开采油藏,并使桶油当量的开发成本降至最低。莫索拉(Mossoro)油田,在陆上部署了由31/2-in和51/2-in流入控制设备构成的完全电子化智能井系统。安装这套系统的目的是为了在将该技术应用于海底油井之前加以验证。这些阀门是在办公室遥控操纵的。经过数月的成功应用和收集数据,拆除了该系统并准备将其安装到深水海底油井。在陆上油井的试验期间,发现有必要修改数据的存储容量。然后对软件进行了修改,以优化数据的存储速率。为了将智能井系统与防砂完井相结合,必须有一个优化过程以满足建井和作业需要。这一优化过程包括:(1)为达到目标井位进行井眼轨迹设计,同时要控制“狗腿”的严重程度以利于智能井系统设备的下入;(2)为获得流入控制和尽量降低安装过程作业�