学科分类
/ 1
9 个结果
  • 简介:本文构造了一些线性规划问题来探讨多重最优的判别准则;补充了现行文献中关于多重最优判别准则描述的不足,并指出多重最优判别准则在出现退化解时可能失效的例外情况.

  • 标签: 线性规划 多重最优解 判别准则
  • 简介:本文尝试将Nash谈判应用到金融领域中,从对策论的角度解释和探讨了互换的源泉、机制和定价模型,提出互换过程即为一个求解Nash谈判的过程,在不考虑风险和考虑风险的情况下,分别求出谈判双方的收益比。

  • 标签: NASH均衡 Nash谈判解 融资互换 收益比 固定利率 浮动利率
  • 简介:提出了求解线性规划问题的一种新方法--基算法.它是一个不需引入人工变量,不必预先求出一个可行基的直接求解算法.

  • 标签: 线性规划 基解算法 最优基可行解
  • 简介:利用线性规划单纯形表对线性规划原问题存在无穷多最优和对偶问题存在无穷多最优的情况进行了讨论,并分析了对偶问题存在无穷多最优情况下的影子价格的方向性,最后以实例说明了各种情况,对初学者加深理解及决策者决策参考有一定帮助。

  • 标签: 线性规划 单纯形表 无穷多最优解 对偶问题 影子价格
  • 简介:区间数线性规划可用于处理含有离散区间数的不确定性优化问题。针对已有算法所求区间可能包含非可行的缺陷,基于可能度概念提出了区间数线性规划的有效、弱有效、最优及其域的定义,给出了改进解法,所得区间为以上解域的子集。以一个数值模型为例求解,将运算结果与已有算法所得区间解作了对比,说明了改进解法的有效性。

  • 标签: 区间数线性规划 可能度 区间解 有效解 弱有效解
  • 简介:本文考虑线性约束条件下连续与半可微的伪线性(既伪凸又伪凹)函数的优化问题.使用伪线性函数的性质推导了解集的一般表达式,并基于用右侧导数代替既约梯度的广义凸单纯形法,给出了唯一的条件以及当唯一性条件不满足时求出集的计算步骤,最后给出了算例。

  • 标签: 非线性优化 解集 广义凸单纯形法 半可微函数 伪线性 右侧导数
  • 简介:本文通过增加一个特殊约束,贯彻对偶单纯形法检验数全非正的思想,迭代求优;然后再去掉该约束,结果却可得到一个基可行。上述过程经简化处理后,增减约束可以不必出现,它仅使单纯形表矩阵增加几次初等变换而已,足见其方法之简捷及有效性。

  • 标签: 运筹学 线性规划 单纯形法 对偶单纯形法 增减约束
  • 简介:装卸工问题是从现代物流技术中提出的一个实际问题,这个问题的雏形早在上个世纪60年代中国科学院数学研究所就提出和研究过.现代物流业的迅速发展,促成和推动装卸工问题的提出和研究.装卸工问题是一个新的NP困难的组合优化问题,本文研究限制情形下的装卸工问题,并证明是拟多项式时间可的.

  • 标签: 运筹学 装卸工问题 NP困难 拟多项式时间可解 限制情况