简介:在一致凸Banach空间上,研究了半紧的非扩张压缩映象的修正Ishikawasa三重迭代序列的强收敛问题,建立并证明了若干强收敛定理,推广了Mann和Ishikawa的迭代方法,改进和发展了Xu和贾如鹏等作者的主要结果.
简介:主要说明两两NQD随机变量序列的一些收敛性质是任意随机变量序列的强极限定理的推论.
简介:使用新的证明方法,在去掉数列{αn}单调递减的条件下,建立了一致凸Banach空间中的渐近非扩展映象不动点的具误差的Ishikawa迭代序列的新强收敛定理.其结果推广和改进了Schu,Rhoades及周海云等作者的相关结果.
简介:给出并证明了MengerPN-空间中一类具有(Φ,△)-型概率收缩序列的非线性集值及单值算子方程序列解的存在性与唯一性定理,推广了张石生等人的结果,并利用这些定理获得了几个不动点定理。
简介:本文利用随机变量的截尾方法扣条件三级数定理,研究了任意随机变量序列在矩条件下的一类强极限定理,改进了与此相应的一些结果的条件.
简介:在一致光滑Banach空间中,证明了广义Lipschitzφ-增生算子的带误差项的Ishikawa迭代序列强收敛于方程Tx=f的解,其结果改进和扩展了近期许多相关结果.并由此得出了Ishikawa迭代序列稳定性的一些结果.
简介:在一致凸Banach空间上,研究了半紧的非扩张压缩映象||Tx-Ty||≤||x-y||的Ishikawa型的三重迭代序列的收敛性问题,建立并证明了带误差的Ishikawa三重迭代逼近收敛定理,从而独特的推广了Mann和Ishikawa迭代方法,改进和发展了文献[1]-[7]的主要结果.