简介:一、外珠加除法缘起传统珠算除法,实数和商数都通过内珠同向表示。"外珠除法"也不例外,不过是外珠同向表示,已不同于传统示数。即商数、实数都外珠表示,致使"除"由减积变为加积,但商数外珠表示看数不直观,而且算前所有的珠要靠框,是其不足之处。《外珠除法》1指出:"如果把算盘的二元示数,外珠极限为1;内外珠互补关系;负数引入;把外珠除法的置商用外珠改为用内珠表示;将会开拓珠算除法的领域。"
简介:简要介绍了图的关联着色问题的起源、发展情况及目前已有的结论,对一类特殊的图--极大外平面图(Δ≠6),给出了其关联色数.
简介:本文对外代数上复杂度为2的不可分解循环Koszul模M的极小投射分解进行了分析,构造出了基映射对应的矩阵的一种标准形式,进而刻划出了其合冲ΩM的滤链结构.
简介:一个图G的无圈边染色是一个止常的边染色使得其不产生双色圈.Alon,Sudakov和Zaks(2001)猜想:每一个简单图G是无到(△(G)+2)-边可染的,其中△(G)是G的最大度.本文对2-外平面图族证明了该猜想成立.
简介:近似邻近点算法是求解单调变分不等式的一个有效方法,该算法通过解决一系列强单调子问题,产生近似邻近点序列来逼近变分不等式的解,而外梯度算法则通过每次迭代中增加一个投影来克服一般投影算法限制太强的缺点,但它们均未能改变迭代步骤中不规则闭凸区域上投影难计算的问题.于是,本文结合外梯度算法的迭代格式,构造包含原投影区域的半空间,将投影建立在半空间上,简化了投影的求解过程,并对新的邻近点序列作相应限制,使得改进的算法具有较好的收敛性.
外珠加除法
极大外平面图的关联色数
外代数上复杂度为2的Koszul模
2-外平面图的无圈边色数
一般单调变分不等式的近似邻近外梯度算法