简介:讨论了在半群代数k[A]中,如何利用Gause-Jordan消元法去构造半群代数的理想的良序基,进而得到理想的良性基-Groebner-基.
简介:在α次积分C半群和双连续n次积分C半群的基础上,探讨了双连续α次积分C半群的扰动性,得到了双连续α次积分C半群的扰动定理,并且在局部Lipschitz连续条件下证明双连续α次积分C半群的扰动理论仍然成立.
简介:在不要求C0-半群为紧半群的前提下.利用函数e^-λt(其中λ〉0是常数)和Monch不动点定理,在更广泛的条件下,得到了Banach空间中一类半线性混合型发展方程初值问题的整体mild解和正mild解,本质上改进和推广了已有相关结果.
简介:本文讨论了强G-半预不变凸函数,它是强预不变凸函数与强G-预不变凸函数的真推广.首先,举例说明了强G-半预不变凸函数的存在性;然后,借助集合稠密性原理,获得了强G-半预不变凸函数的一个充要条件;最后,得到强G-半预不变凸函数在一定假设(在闭半连通集上)下的下确界就是函数在此集合上的最小值,所得结果推广并改进了相应文献中的结果.
简介:本文在L^1空间上,研究了种群细胞中一类具总转变规则的Rotenberg模型,讨论了这类模型相应的迁移算子生成正C0半群,并且证明了该正C0半群是不可约的等结果.