简介:本文利用Schur—Cohn—Jury引理及分岔理论讨论了一类捕食与被捕食系统的动力学性质,分析了其正平衡点的稳定性,并讨论了Neimark—Sacker分岔稳定性与方向。通过数值模拟验证了所得结果的正确性。
简介:一、启发提问图7-771.如图7-77,⊙O1、⊙O2沿直线O1O2作相向运动,请观察:(1)两圆有无公共点?若有公共点?有几个?(2)在哪几个位置时⊙O1与⊙O2有一个公共点?(3)在什么位置时⊙O1与⊙O2有两个公共点?2.设⊙O1的半径为r,⊙O2的半径为R,O1O2=d,试用d、R、r之间的数量关系表示两圆的五种位置关系.3.若两圆相切,则连心线必过.4.连心线是一条直线,相交两圆的连心线公共弧.二、能力训练1.填空图7-78(1)设⊙O1、⊙O2的半径分别为r、R(R≥r).O1O2=d,那么:①如图7-78,⊙O1与⊙O2相离,则dR+r.②如图7-79,⊙O1与⊙O2外切,则.③
简介:亲爱的同学,通过本章的学习,你将:1.经历从具体实例中认识图形的相似,探索相似图形的性质;了解线段的比、成比例线段;两个三角形相似的概念,探索两个三角形相似的条件,知道相似多边形的特征与性质;了解图形的位似,能利用位似将一个图形放大或缩小;通过典型实例去观察和认识现实生活中物体的相似,会利用图形的相似解决一些实际问题;认识并能在方格纸上建立适当的直角坐标系,在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标,能灵活运用不同的方式确定物体位置;学习用坐标的方法研究图形的运动变换,从中体会数与形间的关系。