简介:本文结合作者所参与的实际顶管工程项目,对目前圆形竖井壁后的土体反力计算方法进行了分析,采用考虑位移的土压力方法计算后靠背井壁环向土体反力,竖向土体反力按Rangken被动土压力理论计算,考虑井底及井侧壁摩阻力和前壁主动土压力的作用,根据圆形竖井整体受力平衡条件,得出壁后最大土体反力和允许顶力的计算公式。结合实测位移及顶力分析计算,在新加坡顶管工程中的砂质粘土中采用水土压力分算和合算得到的竖井最大土体反力差别较大,与其他方法相比,采用水土合算得到的允许顶力与实测最大顶力较为接近,符合实际工程情况。该方法已运用于设计及施工顶管工作井,结果经济、合理、简便,效果显著。
简介:锚杆的应用越来越普遍,锚杆锚固段的受力特点一直是工程人员探索的焦点。工程设计人员对锚杆锚固段长度范围内的受力一般都按均匀受力考虑。根据实际施工经验,锚杆锚固力沿杆体并非均匀受力,也非全长受力,可能存在一个有效锚固段。检测锚杆受力的手段很多,一般都不理想,光纤光栅传感技术由于其粘贴紧密,敏感性强,受外界影响小等优点,能够较好的反映锚杆的实际受力情况。本研究通过采用光纤光栅技术,在锚杆杆体不同位置处安装光纤光栅应变传感器,检测锚杆杆体不同部位的应变,获得锚杆受拉后应变变化趋势,进而得出锚杆锚固力分布规律和有效锚固段长度,为工程设计人员优化方案提供了宝贵的经验。
简介:城市互通连接线下穿线工程引起结构变形特性、力学响应一直是工程界争论的焦点。建立非线性数值力学模型,研究施工过程初支内力、地表沉降、中壁受力、塑性区分布及围岩力学响应。结果表明:初期支护最大轴力637kN,发生左拱肩,最大弯矩91.4kN·m,发生在左边墙脚,安全系数1.1。地表沉降平均值13mm,最大值14.1mm,出现在先行洞中线偏右4m附近。中壁最大轴力641kN,安全系数3.5,满足施工阶段强度要求。在边墙和拱顶仰拱处发生较大塑性区,建议打设4m锚杆加强围岩。衬砌结构最大压应力3.66MPa,远小于混凝土抗压强度;最大拉应力出现在墙脚,峰值达3.3MPa,施工过程中应保证墙脚配筋。