简介:摘要:本研究旨在利用深度学习技术构建一种新型的金融风险管理模型,以提高金融机构在复杂多变的市场环境中的风险管理能力。深度学习作为一种先进的机器学习技术,具有强大的特征学习和数据处理能力,能够自动提取和挖掘金融数据中的深层次信息,为风险管理提供更为准确和全面的决策支持。本研究首先介绍了金融风险管理的重要性和挑战,以及深度学习在风险管理领域的应用现状。然后,详细阐述了基于深度学习的金融风险管理模型的构建过程,包括数据预处理、特征提取、模型训练等关键步骤。在模型构建过程中,本研究采用了多种深度学习算法,如卷积神经网络(CNN)、循环神经网络(RNN)等,以充分利用金融数据的时序性和空间性特征。
简介:摘要:我国经济水平和我国科技水平的快速发展,通过企业党建工作及生产经营之间的深度融合,能够让原本企业中的党建工作成功转化为企业发展过程中的优势和动力,推动企业进步。企业党建工作及生产经营深度融合的重要性在现在市场经济快速发展的过程中表现得更加明显,两者之间的融合不仅能够促进党建工作的制度化及科学化变革,帮助提高企业党建工作的有效性,同时也能够促使企业思想政治优势向生产优势转变,推动企业进步,这对提升企业员工文化认同感会产生积极的影响。针对企业党建与生产经营深度融合中的问题进行研究和探讨,并提出相应的融合思路和对策,有利于企业党建工作顺利组织开展,提高企业生产经营效率。
简介:摘要:遥感图像目标检测在城市规划、资源调查和灾害监测等领域应用广泛,基于遥感图像的目标检测具有重要研究意义。遥感技术为人们快速、全面了解地表覆盖变化提供了技术支持,在高分辨率遥感技术不断发展的大背景下,大量高品质遥感图像的采集越来越方便。遥感图像是利用遥感技术生成的远距离图像,可以对目标进行有效的处理。目标检测是遥感图像处理的基础任务之一,通过对遥感图像的分析可以分辨出水体、植被等目标,同时遥感影像可以识别更小的目标,如具体的树木、人、交通标志、足球场标志线等等,因此遥感图像目标检测已经成为当前研究的热点问题。遥感设备拍摄图像时由于设备距离目标较远,包含的地面范围大,受到分辨率的限制,待检测目标可能以微小形式显示在遥感图像中,这些检测目标具有尺度小、特征弱等特点,为图像目标的检测工作带来较大难度。