简介:针对传统基于微波手段的空间对地观测主要方法——星载合成孔径雷达(SAR)体制受限于目标与雷达的相对运动问题,结合由量子关联成像发展而来的微波关联成像技术,提出了一种新的通过多颗分布式卫星实现凝视成像方法。首先,在微波关联成像的基础之上,建立一维微波关联成像的信号模型。然后,在极坐标系下,通过一维微波关联成像实现对回波半径向的“聚焦”,得到单部雷达对目标的距离环图像。其次,通过N颗分布式星载雷达得到距离环方程组,联立方程组解算目标位置信息,实现二维分辨能力;确定位置信息之后,进一步通过距离环幅度方程组解算目标幅度信息。最后,通过对稀疏场景进行仿真、成像处理,验证了该方法的有效性。
简介:针对三维弹道目标,给出了一种有效的基于粒子滤波的跟踪算法。这种算法以标准的粒子滤波算法为基础,根据贝叶斯原理利用局部线性化技术获得最佳近似的重要性密度函数以避免粒子退化现象,并且利用Metropolis-Hastings(MH)采样构造的马尔科夫链得到更加符合目标分布的样本,从而最小化重采样后的粒子枯竭问题。此外,这里采用Kullback-Leibler距离(KLD)指标对不同粒子滤波算法的性能进行评估。仿真结果表明,该三维弹道目标跟踪算法粒子群与参考粒子群(近似真实目标概率分布的粒子群)之间的KLD比标准粒子滤波与参考粒子群之间的KLD更小,因此,能获得比标准粒子滤波算法更好的跟踪效果。
简介:雷达在跟踪海面(地面)低空目标时,由于受到多路径反射效应的影响,由目标反射的直接回波和经由海面(地面)反射的反射回波同存在于一个接收天线波束宽度内,从而产生“角闪烁”效应。该文利用直接回波和反射回波之间的多路径时间差与目标高度之间的关系,提出了一种基于目标高分辨一维距离像的测高方法,即通过对高分辨一维距离像进行自相关获得多路径时延差进而估计低空目标的高度。为了提高时域分辨率,避免“栅栏效应”,文中又采用逆Chirp—z变换方法,通过对频域接收信号进行密集采样插值,提高时域目标高分辨一维距离像的分辨能力并改善雷达测高性能。仿真结果验证了本方法的有效性。
简介:将太赫兹波用于SAR成像可以解决常规SAR成像帧速低、慢动目标检测困难等问题。太赫兹合成孔径雷达(THz-SAR)与传统微波SAR成像最重要的区别在于运动补偿。因为THz-SAR的工作波长比传统微波SAR要短得多,平台的微小振动会影响成像质量,尤其是高频振动误差。平台的高频振动会在成像结果中引入成对回波,传统SAR成像算法无法实现成对回波的聚焦,也就无法准确估计振动参数,进而构造参考函数补偿高频振动带来的正弦调制相位。首先基于多普勒Keystone变换(DKT)的THz-SAR成像算法实现成对回波的聚焦成像;然后提出小波多分辨分析的方法估计高频振动频率,结合参数空间投影法完成振动幅相的估计,并实现高频振动误差的补偿;最后采用点目标的回波数据仿真验证了所提方法的有效性。