简介:利用在线耦合的大气化学模式WRF-ChemV3.6(WeatherResearchForecastingModelwithChemistryVersion3.6)及环境、气象观测数据,在完成大气化学方案优选的基础上,研究了华北地区一次重霾污染过程(2013年2月15-17日)对气象条件的反馈作用。重点关注一次颗粒物、无机气态成分和挥发性有机污染物的人为排放对PM2.5(空气动力学当量直径小于等于2.5μm的颗粒物,即细颗粒物)生成的贡献,探讨了由此引发的气象条件的变化。模拟结果显示,上述3种人为源的综合排放对华北地区PM2.5浓度的平均贡献率为91.27%,其中对北京、秦皇岛和沧州的贡献率分别达96.9%、95.9%和97.2%。这使区域地面太阳向下短波辐射降低近15.99%,区域平均地面辐射强迫达-26.51Wm^-2,由此导致地面温度下降0.14°C(3.68%),逆温增强,垂直温度梯度(?T/?z)升高0.026Kkm^-1,边界层高度降低18.92m(8.77%),平均风速减少约0.014ms^-1(0.35%),相对湿度绝对值升高0.51%,地面平均气压降低0.86Pa。对于15-17日污染过程,人为源综合排放的气溶胶对短波辐射的影响在天气过程中占主导地位,对边界层高度的影响较大,但不起主导作用,对温度、风速、相对湿度、气压的作用则远小于天气系统本身。挥发性有机污染物(VolatileOrganicCompounds,VOCs)作为二次有机气溶胶(SecondaryOrganicAerosol,SOA)的前体物,其人为排放对SOA浓度的贡献率约为99.6%。同时,VOCs通过调整大气反应活性促进无机气态成分向无机盐转化,它对硫酸盐和硝酸盐浓度的贡献达50%以上。然而,VOCs对整个PM2.5浓度的贡献不及各种源综合贡献的1/4。人为排放的VOCs对气象场的反馈与综合排放的作用基本一致,但对地面气压的影响VOCs排放时以热力因子为主,而人为源综合排放时以动力因子为主。上述结果暗示,灰霾污染过程所引发的气象条件向不利于污染物扩散方向
简介:城市通风廊道能增加城市空气流通能力,缓解城市热岛,为了定量评估城市通风廊道的气象效应,本文采用区域边界层化学模式(RBLM-Chem),利用杭州市高分辨率地表类型、城市建筑等资料,开展了杭州市通风廊道影响的模拟研究,模式水平分辨率为250m。本文针对冬季和夏季两个典型个例进行数值模拟和敏感性试验,夏季个例时间为2013年8月12日,盛行南风,风向顺着通风廊道;冬季个例时间为2014年1月28日,盛行东风,风向垂直于通风廊道。主要结论如下:城市绿色通风廊道有增加风速、降低气温、提高湿度的作用,与没有通风廊道的情况相比,夏季风顺着廊道方向时,廊道区域风速平均增加可达1.4m/s,廊道区域内60m高度风速平均增加可达1m/s。而冬季风垂直于廊道时,廊道区域风速增加较小,仅有0.5m/s左右。通风廊道夏季降温幅度平均可达2.7℃,冬季降温幅度较小,仅有0.6℃左右。通风廊道对气象场的影响随风向向下游延伸,夏季在通风廊道下游250m处,风速增加、气温下降、相对湿度增加最大值分别为1.5m/s、2.9℃、3.1%,即使在通风廊道下游1500m处,最大降温仍有1.2℃。
简介:利用兰州大学半干旱区气候与环境观测站(SOCAL)的微脉冲激光雷达(MPL)2008年4月30日至5月2日观测资料,对晴朗天气、浮沉天气及扬沙天气过程中气溶胶垂直分布的连续变化、物理机制进行了对比分析与探讨。结果表明MPL很好地反映出不同天气过程中大气气溶胶廓线的日变化特征:受人类活动影响,天气晴朗时,早晨9时开始在0—2km范围出现气溶胶聚集区,持续至15时,气溶胶平均消光系数〈0.20km-1;受沙尘输送影响,浮尘天气时,气溶胶聚集区高度范围为1—2km,高层气溶胶富集区高度范围为5—7km,气溶胶平均消光系数0.38km-1;扬沙天气时,气溶胶聚集区高度范围为0—1km,浓度远大于浮尘天气,但高层气溶胶浓度较小且分布较均匀,气溶胶平均消光系数〉0.50km-1。