简介:场景锁定技术是视频跟踪领域的一个关键技术,需要对图像的全局运动进行估计,常用的运动估计算法由于计算量大、对噪声敏感等因素很难得到实际应用。为了减少运动估计的计算量,提高全局运动估计的精度,提出了一种基于Harris角点全局运动估计的场景锁定方法。将图像分成4×4的16个块,选取每个块中响应值最大的角点,以参考图像角点周围矩形块与待匹配图像进行匹配,然后利用RANSAC算法对角点进行一致性检测,利用最小二乘法解算全局运动参数,最后计算图像之间的累积运动。实验结果表明,该算法运动估计精度高,稳定性好,能较好地实现场景锁定。
简介:LDA主题模型是文本挖掘领域的重要算法,同时在推荐系统当中也有不错的表现.通过LDA主题模型挖掘用户感兴趣的主题,是目前最常用的用户兴趣主题挖掘方法之一.为了提高LDA主题模型应用在推荐系统时的推荐质量,我们提出了一种基于负样本进行学习的方法negLDA.通过创造出负样本来学习用户对物品的负面预测评分,同时结合正样本学习得到的正面预测评分,从正反两个方面进行综合评测,从而更加精确地衡量出用户对物品的预测评分.通过在MoviesLens-100k、MovieLens-1M、FilmTrust这三个数据集上的实验,表明所提出的算法在精确率、召回率、AUC三个指标上相比传统算法均有一定改进.