简介:研究Cu-Mg-Te-Y合金在铸态、热轧态、冷轧态的组织和元素分布;讨论不同退火温度对Cu-Mg-Te-Y合金组织的改变;分析轧制和退火温度对Cu-Mg-Te-Y合金性能的影响。结果表明,不同的轧制工艺获得的合金组织与铸态合金组织相比差别明显,轧制后合金中Mg元素分布比铸态合金的更加均匀,Cu-Mg-Te-Y合金热轧后Cu2Te相被挤碎,尺寸变小,分布更加弥散,继续冷轧后Cu2Te相则被拉长、压扁,呈细条状。冷轧后的Cu-Mg-Te-Y合金在390℃以下退火1h,组织变化不明显,在550℃退火1h后,冷变形产生的纤维状组织发生完全回复再结晶,加工硬化效果消失,抗拉强度大幅度下降,导电率上升。退火温度在360~390℃范围内,Cu-Mg-Te-Y合金可以获得较好的力学性能。
简介:研究纳米羟基磷灰石(HAP)涂覆的多孔Mg-2Zn(质量分数,%)支架材料的生物降解能力和生物相容性。采用脉冲电沉积制备羟基磷灰石涂层。对涂覆HAP的支架在碱性溶液中进行后处理来改善其生物降解性和生物相容性。研究支架和HAP涂层的显微组织和成分以及它们在模拟体液(SBF)中的降解和细胞毒性。经过碱溶液处理后的涂层由几乎垂直于基体的直径小于100nm的针状HAP组成,具有和天然骨头相似的成分,浸泡在SBF中后,产物为HAP、(Ca,Mg)3(PO4)2和Mg(OH)2。涂覆HAP和经过处理碱处理后的支架比未涂覆HAP的支架具有更高的生物相容性和细胞存活性。MG63细胞粘附在涂覆HAP和经过碱处理后的支架的表面并增殖,使这些支架有望应用于医学。结果表明:纳米HAP的脉冲电沉积和碱处理可有效改善多孔Mg-Zn支架的生物降解能力和生物相容性。
简介:以Ti+Ni+B4C粉末混合物为原料,利用激光熔覆技术在TA15钛合金基材表面制得TiB-TiC共同增强TiNi-Ti2Ni金属间化合物复合涂层。采用OM、SEM、XRD、EDS及AFM等手段分析激光熔覆涂层的显微组织及磨损表面,测试涂层的室温干滑动磨损性能。结果表明,激光熔覆TiB-TiC增强TiNi-Ti2Ni金属间化合物复合涂层熔覆具有独特的显微组织,菊花状的TiB-TiC共晶均匀分布在TiNi-Ti2Ni双相金属间化合物基体中。由于高硬、高耐磨TiB-TiC陶瓷相与高韧性TiNi-Ti2Ni双相金属间化合物基体的共同配合,激光熔覆涂层表现出优异的耐磨性。
简介:将双辊铸轧运用于制造Al-Zn-Mg-Cu合金带材。研究带材减薄率及热处理温度对合金再结晶行为的影响。结果表明:在冷轧率为60%、热处理制度为500℃的条件下处理1h时,合金带材具有细晶组织(平均晶粒尺寸约为13μm,晶粒纵横比约为1.7)和高的力学性能(UTS≥360MPa,δ≥20%)。研究了微观组织对Al-Zn-Mg-Cu合金带材力学性能的影响。合适的双棍铸轧热处理及加工工艺能制造低价、高强的Al-Zn-Mg-Cu合金带材。