简介:随着人工智能的发展,数字识别技术也得到了关注并通过各种算法提高了识别准确率。数字识别在安防、交通、邮政等领域发挥越来越重要的作用,是智能城市不可或缺的一环。通过采用包含隐含层的BP神经网络对数字识别进行仿真。首先介绍Mnist数据集、人工神经元模型、激活函数、BP算法等相关概念,详细描述了BP神经网络的原理,并通过实例进行BP网络设计。同时提出了6种优化方式,分别是初始化权值、设置Dropout、选取不同的激活函数、选取不同的代价函数、采用不同优化器、设置学习率。结果表明BP网络在数字识别方面具有实际应用价值,并能通过各种优化方式提高识别精度。
简介:在丝绸等织物生产过程中,经常会出现织物产生非正常花纹的缺陷。目前对织物缺陷的检测主要是通过人工肉眼判别,该方法花费时间长、人工成本高,会给企业带来较大的经济负担。本文通过使用BP和SAE两种神经网络对织物进行缺陷检测,并判断是何种缺陷:首先介绍了使用BP神经网络对大量样本训练并保存,得到最佳权值,从而实现对于图像的缺陷检测和分类;训练样本通过SAE深度神经网络训练得到重构图像,再不断微调参数,获得最佳的权重数值,运用滤波器过滤噪声,最终得到结果。通过大量的实验,结果表明两种方法对织物缺陷检测均具有非常良好的效果,充分证明了深度神经网络在工业生产织物过程中运用的可行性。
简介:研究基于深度强化学习技术的避障场景的算法模型设计,采用改进岛深度Q网络(DeepQ-lesrningNet-work,DQN)算法克服了Q-learning表名式算法在连续状态下导致内存不足的局限性。鉴于学习过程中奖励稀疏导致很艰难获得较好结果的情况,改进奖利机制,增知实时奖惩作为补充,解决学习耗时长和练不稳定的问题:采用相对角度、位置金和距离等信息,相比绝对坐标信息可以更有效的躲障碍物。不同于基于栅格法/可视图法等传统人为策略避障算法,深度强化学习算法DQN能够在缺乏先验知识的条件下具备自主决策能力,因此适用性更强。该技术可应用在仓储无人车、巡佥机器人、无人机等现实场景。