简介:用光纤激光器和阵列波导光栅搭建多通道自混合干涉系统,用光谱分析仪监测环路中的光谱特性。研究了多通道自混合干涉时的环路中光谱的特性以及温度对自混合干涉效应的影响。实验结果显示:环路中无光反馈时,其光谱是多个峰值,各峰值与阵列波导光栅通道特性对应,其包络与掺铒光纤激光器的自由增益谱吻合;有光反馈时,该通道光强减弱,多个通道同时引入光反馈时,光路中能量泄露到其他增益较高的通道,形成尖锋;当靶面距离光纤端面较近时,形成强反馈,该通道中会产生自激现象;当环境温度较高时,与AWG对应的各通道都能形成明显的波峰和波谷,温度较低时,波长较短部分波形较平坦,不适合作为传感通道。结果表明,多通道自混合干涉系统用于传感网络是可行的。
简介:目前,在被动锁模掺铒光纤激光器中,进行腔内色散补偿的方法主要包括:在激光谐振腔内熔接一段具有正常色散的光子晶体光纤、插入具有正常色散的光栅对,以及利用具有正常色散的啁啾光纤光栅等。针对目前腔内色散补偿方法存在的耦合效率低、环境稳定性差、色散量不易调节等不足,设计了一种由偏振合束器、色散补偿光纤和法拉第旋转镜构成的线形支路进行腔内色散精确补偿,采用透射式可饱和吸收体实现自启动锁模,并结合混合光器件,实验获得了重复频率为82.84MHz、平均功率为10mW、脉冲宽度为381fs的飞秒脉冲保偏输出,作为种子源,可广泛应用于太赫兹产生、生物医学成像、超快光谱学等领域。
简介:基于法拉第效应的Sagnac干涉仪型光学电流互感器可精确测量电流,因此受到广泛关注。延迟线在典型的串联型电流互感器结构中起到不可或缺的作用,其长度变化会影响系统输出,从而有可能使解调出的法拉第相移引入误差。通过对琼斯矩阵得出的理想系统输出进行理论分析与数值仿真实验,研究了延迟线长度变化对尺度因子的影响。研究结果表明,在一定条件下,延迟线长度失匹配会使尺度因子误差超过0.2%,而温度变化导致的延迟线光程变化产生的尺度因子误差不够明显。因此,建议在采用典型的串联型Sagnac结构及该解调方案时,延迟线长度最好与调制圆频率相匹配,如有特殊需求,实际长度与匹配长度的偏差不要超过50m,或者将所有器件整合在一起,采用专用线传输。
简介:报道了一种基于空气孔型光子晶体自准直环形谐振腔1×4光分束器。其结构由4个改变空气孔半径的分光镜组成。首先运用多光束干涉原理分析光分束器各个端口的透射谱,通过分光镜的合适组合,自准直光就可以按照设定的比例从各出口出射。再利用编写的二维时域有限差分程序进行数值模拟计算,其结果和理论值很好地吻合。该结构具有尺寸小、自由光谱范围大、硅基等优点,有望应用于未来的高密度集成光路中。
简介:利用松弛迭代法数值求解分段抽运方式下光纤激光器的稳态速率方程组,提出了基于遗传算法对分段抽运的功率大小和光纤长度进行同时优化的方法从而实现了最佳温度分布,分析比较了双端抽运和多段抽运方式下的最佳光纤长度,最高工作温度和效率,研究表明,分段抽运方式较双端抽运方式,一方面最高工作温度大大降低并具有更为平坦的温度分布,另一方面由于最佳光纤长度的增加使得信号光衰减变大,从而导致效率略有下降。
简介:设计了一种基于光学偏置并以有机聚合物PMMA/DRI作为光波导材料的新型Mach-Zehdner调制器。利用有效折射率法(EIM),分析了脊波导的有效折射率随脊波导结构参数变化情况,包括脊宽训、脊高b和芯层厚度d,以及上下包层厚度。采用微带线单电极调制方式结合脊波导的结构设计,实现了微波和光波的速率匹配。针对优化的结构参数,采用BPM方法进行光场和功率传输的模拟仿真,完成了非等臂Math—Zehnder调制器的结构设计,实现了两臂89.84。的初始相位差,消光比约为27dB。
简介:使用傅里叶变换光谱仪(FTIR)测试甚长波宽波段(6.4~15μm)红外探测器响应光谱的过程中,发现短波方向响应光谱异常。通过分步测试分析发现:探测器和放大器工作在非线性工作区导致某些情况下仪器信号发生饱和,引起了短波方向响应光谱畸变的现象。对FTIR测量甚长波宽波段(6.4~15μm)红外探测器响应光谱的畸变现象进行了分析,认为探测器的响应时间是影响其响应光谱的重要因素,并通过试验确定了测试系统对不同探测器所设置的测试参数,消除了响应光谱畸变的现象,并提高了测试准确度。
简介:密度是过热水蒸气的一个重要参数,其测量方法多种多样。针对其传统的测量方法精确度偏低、稳定性较差的问题,提出一种基于光纤光栅传感器测量过热水蒸气密度的方法。在分析光纤光栅传感器测量原理与过热水蒸气参数测量对传感器需求的基础上,对光纤光栅传感器、信号解调仪进行选型,并进行测量系统设计。通过比较多种过热水蒸气密度计算方法,选择IFC密度模型计算过热水蒸气密度。误差分析结果表明:当只考虑压力或温度影响时,光纤光栅传感系统测量误差可以分别仅为传统方法测量误差的1/6或1/3。该方法对于高精度过热水蒸气密度测量以及其他过热蒸汽密度测量具有一定的理论指导作用和推广意义。