简介:严重事故下核电安全壳内由于几何与流动的复杂性,需要有可靠的程序对流动进行分析评估.文章采用符合核电安全标准的开源CFD程序Code_Saturne对壳内气体流动进行计算,主要模拟壳内氢气和水蒸气喷放过程.该过程涉及多组分气体低速流动计算浮力效应引起的分层固体结构热传导结构表面与气体之间的热流和冷凝的计算.该程序使用了SIMPLEC格式并添加了低Mach数气体流动算法,基于理想气体模型的多组分模型和薄板结构上的一维热传导模型.同时,在此基础上改进了壁面函数方法,对壁面进行对流传热和传质流动计算.最后利用两个国际化标准问题对该程序及使用的模型进行了验证.
简介:基于vonKarman长度尺度和新型Reynolds应力本构关系对κ-ε瑞流模型重构,将k方程封闭,米用代数形式对瑞流耗散项进行模化.在KDO(kineticdependentonly)模型的基础上,引入可压缩vonKarman长度尺度,得到一种适用于复杂可压缩流动的新型瑞流模型CKDO(compressiblekineticdependentonly),在CKDO模型中没有任何经验系数,仅有两个来自边界层精细化标定的可调参数.对RAE2822翼型、轴对称圆筒管道凸起流动、ONERA-M6机翼跨声速流动等算例进行数值计算,结果显示CKDO湍流模型对上述算例流场的压力系数模拟结果与实验值吻合较好,表明CKDO模型能够对跨声速流场进行较为准确的模拟.
简介:在Sage-Husa滤波基础上,提出了其改进的滤波算法,以解决它在容错性能差和高阶状态阵滤波发散等方面的问题.仿真结果表明,利用改进Sage-Husa滤波可有效提高GPS/INS组合制导的容错性能和精度.
简介:利用压力传感器测量扑翼的瞬时力,利用数字粒子测速仪(digitalparticleimagevelocimetry,DPIV)系统测量扑翼的前缘涡以及周围的流场,来揭示前缘涡在不同间距下对扑翼平均推力的影响.实验在-个低Reynolds数循环水洞中进行,两串列扑翼均做二维正弦平动.在固定的相位差下,当间距增加时,后翅前缘涡对前翅的影响具有相似性,均提高或者均降低前翅的平均推力.前翅平均推力的提高是由于后翅的前缘涡提高了前翅尾部的射流速度以及有效攻角.随着间距的增加,后翅前缘涡对前翅的影响急剧下降,使得前翅的平均推力快速接近于单翼值.在固定的相位差下,当间距增加时,前翅的脱落涡对后翅的影响变化非常大,后翅的平均推力可能先升高后降低,这是因为间距改变了前翅脱落涡作用于后翅的时间点.当前翅脱落涡遇到后翅,并且和后翅的前缘涡有相同的旋转方向时,前翅的脱落涡会抑制后翅前缘涡的形成,并且后翅的有效攻角减小,其平均推力降低.如果这两个涡的旋转方向相反,那么后翅有效攻角就会增大,平均推力值就会提高.
简介:为了提高水下航行器组合导航系统精度和可靠性,针对水下航行器组合导航系统量测噪声统计特性随实际工作环境的不同而变化的特点,提出了基于模糊自适应联邦卡尔曼滤波的水下组合导航算法。通过监测理论残差与实际残差的协方差的一致程度,应用模糊系统不断调整滤波器的增益系数,对子滤波器进行在线自适应调整,从而实现导航状态的最优估计滤波。通过对联邦滤波器信息分配系数模糊自适应调整,减少了滤波计算量,提高了滤波实时性。软件仿真实验结果表明:模糊自适应滤波可以有效地提高水下航行器组合导航系统的精度和可靠性,提高导航滤波实时性,克服传统的滤波算法的缺点与不足。
简介:对于具有一定机动能力的弹道式再入目标跟踪问题,稳定性好、鲁棒性强、收敛精度高的估计方法是保证跟踪精度的关键。针对再入运动模型和测量体制的强非线性以及目标机动引起的滤波精度下降问题,提出一种将强跟踪滤波(STF)和基于三阶球面-向径容积规则的容积卡尔曼滤波(CKF)相结合的强跟踪-容积卡尔曼滤波(STCKF)。通过将强跟踪算法中的自适应渐消因子引入到滤波时间更新和测量更新方程中,在线实时调整滤波增益矩阵,能有效避免模型失准造成的滤波性能下降,使该算法兼具CKF滤波精度高和STF鲁棒性强的优点。通过数学仿真表明,改进后的STCKF可以实现对具有机动的弹道式再入目标的高精度跟踪,相对于CKF精度提高50%,并且具有更强的鲁棒性和自适应能力。
简介:针对系统误差的不确定性可能会引起滤波精度降低或发散的问题,提出一种新的基于模型预测滤波的前向神经网络算法。首先,采用模型预测滤波估计网络在正向传递过程中的模型误差,并对其进行修正,以弥补模型误差对隐含层权值更新的影响;然后,利用模型预测滤波为神经网络提供精确的训练样本,学习待估计系统的非线性关系。将提出的算法应用于SINS/CNS/BDS组合导航系统,并与扩展卡尔曼滤波进行比较,仿真结果表明,提出的算法得到的姿态误差、速度误差和位置误差分别在[-0.25′,+0.25′]、[-0.05m/s,+0.05m/s]和[-5m,+5m]以内,滤波性能明显优于扩展卡尔曼滤波算法,表明该算法能提高组合导航定位的解算精度。
简介:采用实时小波滤波技术构建硅微陀螺仪数字化平台,对快速的MaIfat算法选用何种小波基,是否采用软硬阈值处理以及选用何种尺度和采样点数进行深入分析。考虑到滤波效果即陀螺仪输出信号滤波前后A1lan方差改进情况和硬件处理的实时性,通过比较最终选择3尺度16点软闽值db2小波Mallat快速算法。仿真计算和实验结果表明该滤波方法对改善微机械陀螺仪的零偏稳定性有一定的实用价值。
简介:为了提高标准Cubature卡尔曼滤波(CKF)的稳定性和鲁棒性,提出一种改进的多重渐消H∞滤波cubamre卡尔曼滤波算法。首先基于系统状态的可观测性给出多重渐消因子矩阵求解过程,提高滤波算法的稳定性,抑制滤波发散;其次,引入H∞鲁棒思想,构造多重渐消H∞滤波Cubature卡尔曼滤波器;最后,提出采用一种奇异值分解的矩阵分解策略代替标准Cubature卡尔曼滤波中的Cholesky分解,进一步提高算法的数值稳定性。实际GPS/INS组合导航实验表明,改进的多重渐消H∞滤波Cubature卡尔曼滤波算法不仅能有效抑制滤波发散提高算法的稳定性,而且对观测野值具有更高的鲁棒性;提出的新算法与标准CKF算法相比,XYZ三个方向的位置精度分别提高了55.8%,46.6%和39.7%。
简介:文章基于等离子体的Joule加热、静电力、Hall效应以及Lorentz加速度等固有特性,对等离子体在航空航天领域(不包括电推进和飞行器再入热防护方面)中的应用进行总结及评估.等离子体激励器在亚声速流到高超声速流的整个空气动力学领域及稀薄流领域,得到了广泛的应用.真正引人瞩目的是,与所控制的流场相比,应用中所加入的电磁力或能量仅仅与其扰动水平相当.因此,有效的流动控制往往就限制在像流动分离、流体动力学不稳定性、动态失速和涡破碎等动力学分岔问题中.有效的控制应用通常是利用有黏-无黏流相互作用的放大效应、外部磁场或微波能量的加入等来增强其控制效果.最后文章根据这些评估,对未来学科前沿提出了几点基础创新研究方向的建议.
简介:针对液压仿真转台伺服系统的非线性特点,提出了一种模糊控制与局部积分控制相结合的复合控制方式.当系统的偏差较大时主要采用模糊控制器对系统的偏差进行快速调节以加快系统的响应过程;当系统的偏差小于某一值时,加入积分控制以保证系统的精度.为了提高模糊控制器的性能,采用了规则可调整的模糊控制器.实验结果表明:该方法能有效地克服液压伺服系统的非线性和参数的不稳定性以及外部干扰对系统的影响,具有较高的控制精度和鲁棒性能,完全适合于液压仿真转台伺服系统的控制.