简介:考察了一类非线性一维p-Laplace方程正解的多解性.主要结论表明,即使非线性项在0点和无穷远处不满足通常的增长条件,该方程仍可能有两个正解.
简介:在不要求非线性项f(t,u)取值非负但厂下方有界的情形下讨论了一类P-Laplacian方程两点边值问题的正解存在性问题,利用锥拉伸压缩不动点定理得到了该边值问题的一个正解存在性结果.
简介:我们证明了半空间中一维可压Navier—Stokes方程初边值问题局部解的存在性,证明主要是利用了能量方法.
简介:主要考虑1+1维Boussinesq系统的一个Darboux变换,反复利用该Darboux变换,可以从该系统的一个已知解出发,通过代数运算和求导运算得到系统的新解.
简介:针对无限域上一维热传导方程的解析解为反常积分形式,直接计算往往比较困难.首先采用Fourier变换给出问题解析解,其次结合解析解的形式和无限域上Gauss型数值积分法精度高的优点,将半无限域上的一维热传导方程问题利用Gauss-Laguerre数值积分计算数值解,对无限域上的一维热传导方程的解析解转化为半无限域上的形式后用Gauss-Laguerre数值积分计算.实验结果表明,本文给出的数值解方法具有很高的精度.