简介:设R是素环,I是R的非零理想,如果R容许一个非单位映射的左乘子使得对所有x,y∈I满足δ(x°y)=x°y或δ(x°y)+x°y=0,那么R可交换.此外,如果R是2-扭自由的素环,U是平方封闭的李理想,γ是伴随导子非零的广义导子,B:R×R→R是迹函数为g(x)=B(x,x)的对称双导,当下列条件之一成立时U为中心李理想(1)γ同态作用于U(2)2[x,y]-g(xy)+g(yx)∈Z(R)(3)2[x,y]+g(xy)-g(yx)∈Z(R)(4)2(x°y)=g(x)-g(y)(5)2(x°y)=g(y)-g(x)对所有的x,y∈U.更多还原
简介:研究服务员强制休假的M/M/1排队模型的主算子在左半复平面中的特征值,证明(λ-μ-b)-√(b+μ)2-3λ2-μb/2是该主算子的几何重数为1的特征值.
简介:研究了由强奇异Calderón-Zygmund算子T和加权BMO(ω)函数b生成的交换子Tb的sharp极大函数的点态估计,证明了这类交换子是由L^[p](μ)到LP(μ)到LP(υ)上的有界算子,其中ω=(μυ^[-1])^[1/P]且μυ∈Ap,1〈P〈∞.
简介:利用特征投影分解(POD)方法建立二维双曲型方程的一种基于POD方法的含有很少自由度但具有足够高精度的降阶宦限差分外推迭代格式。给出其基于POD降阶有限差分解的误差估计及基于POD降阶有限差分外推迭代格式的算法实现。用一个数值例子去说明数值计算结果与理论结果相吻合。进一步说明这种基于POD降阶有限差分外推迭代格式对于求解二维双曲方程是可行和有效的。
简介:研究每个忙期中第一个顾客被拒绝服务的M/M/1排队模型的主算子在左半复平面中的特征值,证明对一切θ∈(0,1),(2√λμ-λ—μ)θ是该主算子的几何重数为1的特征值.
简介:研究每个忙期中第一个顾客被拒绝服务的M/M/1排队模型主算子在左半复平面中的特征值,证明2√λμ-λ-μ是该主算子的几何重数为1的特征值。
简介:研究一类失效状态为吸收状态及重试率为常数的M^[X]/M/1排队模型的主算子在左半实轴上的特征值,证明:当顾客的到达率λ,服务员的服务率v,服务员的服务完成率b,顾客的重试率α满足一定的条件时,-α是该主算子的几何重数为1的特征值.