简介:本文主要建立了序半群S中N-类的单性与S的关于其元素和理想的某些性质之间的等价关系.
简介:文献[4]给出Catmull—Clark细分曲面控制网格的收敛速率和一个误差计算公式.本文在这基础上提出一个新的算法,并借助此新算法得到关于Catmull—Clark细分曲面控制网络的收敛速率的更精确的估计和给出更好的误差计算公式.
简介:设T∈H(H),T=U|T|是算子T的极分解,则定义T^λ=|T|^λU|T|^1-λ和T^λ(*)=|T*|^λU|T*|^1-λ,(其中0〈λ〈1)分别为算子的广义Aluthge变换和广义*-Aluthge变换.本文中主要研究了三者之间的几种谱的关系.同时,还证明了算子T满足修正的Weyl定理当且仅当弘满足修正的Weyl定理当且仅当T^λ(*)满足修正的Weyl定理.最后证明了算子T满足a—Weyl定理当且仅当T^λ满足a—Weyl定理.
简介:给出了Charlier多项式的若干性质及证明,并且讨论了当Charlier多项式中的自变量为Poisson随机变量时具有的性质.
简介:用等价关系Q^~出了完全Rees矩阵半群的一种分解.而且得到了它的每个Q^~一类的表示.