简介:我们证明了半空间中一维可压Navier—Stokes方程初边值问题局部解的存在性,证明主要是利用了能量方法.
简介:主要考虑1+1维Boussinesq系统的一个Darboux变换,反复利用该Darboux变换,可以从该系统的一个已知解出发,通过代数运算和求导运算得到系统的新解.
简介:针对无限域上一维热传导方程的解析解为反常积分形式,直接计算往往比较困难.首先采用Fourier变换给出问题解析解,其次结合解析解的形式和无限域上Gauss型数值积分法精度高的优点,将半无限域上的一维热传导方程问题利用Gauss-Laguerre数值积分计算数值解,对无限域上的一维热传导方程的解析解转化为半无限域上的形式后用Gauss-Laguerre数值积分计算.实验结果表明,本文给出的数值解方法具有很高的精度.
简介:利用特征投影分解(POD)方法建立二维双曲型方程的一种基于POD方法的含有很少自由度但具有足够高精度的降阶宦限差分外推迭代格式。给出其基于POD降阶有限差分解的误差估计及基于POD降阶有限差分外推迭代格式的算法实现。用一个数值例子去说明数值计算结果与理论结果相吻合。进一步说明这种基于POD降阶有限差分外推迭代格式对于求解二维双曲方程是可行和有效的。