简介:研究一阶主从多智能体网络的汇聚问题,基于多智能体网络群体的社会制度,提出3种汇聚策略,即民主、独裁和混合策略。假设在策略中,只有领导者知道全局任务,即汇聚到一个已知的目标点,跟随者只需要与领导者群体保持联系,从而能够到达目标点。研究发现,主从网络多智体个体在属性上可以分为目标智能体,领导者智能体,非孤立跟随者从智能体和孤立跟随者从智能体。研究结果表明民主策略容易实现所有智能体到达目标点,但移动速度较慢;在独裁策略作用下,智能体网络可以很快实现汇聚,但个别跟随者从智能体由于初始条件下感应不到环境中的领导者智能体而永远停留在原来的位置;引进混合策略后,即可以保证所有的智能体到达目标点而且又可以保持较快的到达速度。通过对模型和拓扑结构的分析,得出3种策略各自的特点,并以4个领导者和5个跟随者组成的主从智能体网络为例进行仿真。
简介:为了研究有限理性假设下出行者的自适应调整行为对交通网络分流的影响,利用累积前景理论结合演化元胞自动机建立了具有个体交互机制的多主体路径选择模型.在模型中将出行者划分为风险追求者与风险厌恶者,基于出行时间可靠性并借鉴元胞遗传算法的思想设计了具有异质特点的出行者动态参照点及其演化规则,使出行者个体能够依据决策环境的变化动态地调整自身的出行时间预算,更加符合出行者的实际行为特征.最后将多主体参照点演化规则与传统的相继平均算法相结合,求解路网配流.研究发现:演化模型较好地继承了传统模型中的路径分流特点;不同的出行者类型比例及出行者的信息接收程度是影响路网分流结构的重要因素.