学科分类
/ 1
3 个结果
  • 简介:针对光伏发电短期预测准确性问题,提出一种基于集合经验模态分解(EEMD)和改进粒子群优化算法(IPSO)的支持向量机(SVM)预测模型。该模型选择与预测日具有相同天气类型的历史光伏小时出力数据及相关气象因素作为输入变量,采用EEMD方法将历史光伏小时出力数据分解为一系列相对比较平稳的分量序列,针对不同特征子序列,建立选用不同核函数的SVM模型分别进行短期预测,并采用IPSO对不同SVM模型的参数进行优化。通过建立不同预测模型进行比较分析,验证了本文提出的组合预测模型具有较高的预测精度,对大规模光伏并网电力系统的决策优化调度具有一定的意义和参考价值。

  • 标签: 光伏发电短期预测 集合经验模态分解 改进粒子群优化算法 支持向量机
  • 简介:为了提高风电功率预测精度,针对支持向量机(SVM)模型在风电功率预测中存在的参数选取问题,提出用人工鱼群算法(AFSA)寻找SVM模型的最优核函数参数和错误惩罚因子的优化方法。建立AFSA—SVM模型,结合聚类分析后的数值天气预报(NWP)数据对风电功率进行预测。经仿真实验并与BP、粒子群优化的支持向量机模型对比,AFSA-SVM优化模型在短期风电功率预测中有更好的预测效果。

  • 标签: 人工鱼群算法 支持向量机 聚类分析 风电功率预测