简介:以铝热反应法制备无昂贵合金元素添加的纳米结构白口铸铁,采用XRD、OM、SEM和拉伸及压缩等分析、测试手段研究碳含量对纳米结构白口铸铁组织和力学性能的影响。结果表明:随碳含量增加,白口铸铁由不同形态的珠光体和渗碳体组成,其中层片状珠光体含量减少,粒状珠光体含量增加;层片状珠光体的片间距分别为165、231和250nm。碳含量为3.5%,3.7%和4.3%的纳米结构白口铸铁的维氏硬度分别为552、577和575HV,抗压强度为2224、2460和2220MPa,抗拉强度为383、416和245MP,均呈现先增大后减小的趋势;伸长率为3%、2.5%和1%,呈现逐渐下降的趋势。无昂贵合金元素添加的纳米结构白口铸铁的力学性能与Ni-Hard2铸铁相当。
简介:以AgNO3为原料,抗坏血酸为还原剂,采用快速加料的方式制备高分散性超细银粉,用扫描电镜、ζ电位分析仪、紫外-可见光谱分析仪等对银粉进行表征,研究硝酸银溶液性质如硝酸银溶液浓度c(AgNO3)、初始pH值,以及表面活性剂的加入对超细银粉形貌与粒径的影响。结果表明,当c(AgNO3)>0.30mol/L时,银粉表面粗糙、形貌变得不规则且分散性变差。银粉粒度随硝酸银溶液pH值增大而减小,但pH增大到7.0时银粉团聚现象较严重。抗坏血酸分子在还原过程中具有自分散作用,在c(AgNO3)为0.2mol/L、初始pH=5.0的条件下,不添加任何表面活性剂即可获得分散性好、表面光滑、形貌规则的球形银粉。在AgNO3溶液中加入分散剂PVP可适当减小银粉粒径,而加入丁二酸、吐温80、PEG、PAA和明胶等分散剂对银粉形貌的改善不大。
简介:Al-Zn-Mg-Cu系超强铝合金因为高强度和高韧性,已作为轻质高强结构材料广泛应用于航空航天领域。该文主要介绍国内外高强铝合金的发展历程及最新研究进展,指出Al-Zn-Mg-Cu超强铝合金的研究经历了高强低韧→高强耐蚀→高强高韧耐蚀→超强高韧耐蚀4个发展阶段,认为调控晶界结构及晶界析出相状态已成为目前铝合金研究的重点;简要评述微观组织和晶界结构对超强铝合金性能的影响,并介绍超强铝合金弥散相和形变—热处理工艺的研究现状及其调控晶界结构和晶界析出相状态的原理。最后指出寻找新型弥散相和开发新型的形变—热处理工艺是提高超强铝合金性能的重要发展方向和途径。
简介:采用X射线XRD、红外光谱FTIR、扫描电镜SEM、透射电镜TEM等分析手段,研究了十六胺有机膜对羟基磷灰石(HA)晶体结构、形核、晶体形貌和结晶学定向生长的调控作用及其机理.结果表明:无有机膜时,生成物为磷酸八钙(OCP)和羟基磷灰石(HA)的混合物,其生长速率很慢且晶体排列无一定规则;而在十六胺有机膜调控下,生成物为按规则排列、沿〈0001〉定向生长、结晶良好的纳米片状羟基磷灰石晶体,且其形核和生长速度均很快.其原因是:十六胺有机膜上带有的大量极性强、电荷密度高的-NH3基团,通过静电作用在有机膜/溶液界面处形成局域过饱和浓度,促进羟基磷灰石晶体形核;另一方面,十六胺有机膜的二维晶格尺寸与HA(0001)面的晶格参数具有良好的匹配关系,构造了一个有利于HA以(0001)面形核生长的结构框架,从而促进了HA相沿〈0001〉方向定向生长.
简介:采用3种不同的工艺(直接在450℃下进行时效处理;80%冷轧,然后在450℃下进行时效处理;600℃/8h高温预时效+80%冷轧+780℃/2min+450℃/16h终时效)对固溶处理后的Cu-2.0Ni-0.34Si-Mg合金进行形变热处理,研究形变热处理工艺对该合金的组织与硬度及电导率的影响。结果表明:采用第3种工艺对合金进行形变热处理,由于其中的短时高温预处理可以获得溶质原子充分固溶的过饱和固溶体,因此终时效后的合金具有最佳的综合性能,显微硬度为180HV,相对电导率为49.8%IACS,伸长率为13%。合金的平均晶粒尺寸约为20μm,主要析出强化相为δ-Ni2Si。
简介:以水热共还原法制备纳米W-30%Cu复合粉末,通过真空烧结和包套热挤压制备超细晶W-Cu复合材料,并进行后续热处理。采用X射线衍射、高分辨率透射电镜、扫描电镜等观察和分析W-30%Cu复合粉体和合金的成分及组织形貌,研究热挤压及后续退火处理对材料致密度、电导率和硬度等性能的影响。结果表明:水热产物为纳米级(10~15nm)规则的类球形结构,经煅烧及共还原后得到的W-30%Cu复合粉末粒度细小,呈特殊的W包覆Cu结构,颗粒分布均匀;复合粉末在1050℃真空烧结后相对密度只有91.5%,经热挤压后致密度提高到97.07%,布氏硬度达到223,组织细密,W相和Cu相分布均匀,钨颗粒细小(1~3μm),形成典型的钨骨架和铜网络结构。经过后续的退火处理,钨铜分布更均匀,钨粒径进一步减小,材料的致密度和电导率都更高,分别为98.82%和43.31%IACS,形成良好的综合性能指标匹配。
简介:用C3H6作为碳源气,Ar作为稀释气体和载气,TaCl5为钽源,采用化学气相沉积法(chemicalvapordeposition,CVD)在高纯石墨表面制备TaC涂层。采用X射线衍射(XRD)和扫描电镜(SEM)等对涂层进行表征,研究1000℃下稀释气体(Ar)流量对TaC涂层成分、织构及表面形貌的影响。结果表明:随着稀释气体流量增大,表面均匀性和光滑度提高,晶粒尺寸减小,晶体择优取向降低,沉积速率减小,涂层中C含量增多。当稀释气体流量为100mL/min时,TaC涂层晶粒尺寸与沉积速率分别为32.5nm和0.60μm/h;而当稀释气体流量增大到600mL/min时,涂层晶粒尺寸与沉积速率分别下降到21nm和0.25μm/h。
简介:采用冷等静压法(coolisostaticpressing,CIP)制得大尺寸钼骨架,对骨架进行渗铜制备Mo-30Cu合金,并在350℃进行温轧,研究CIP压力及熔渗温度和熔渗时间对合金致密度的影响以及合金的轧制性能。结果表明:采用冷等静压法在120~180MPa压力下可制备孔隙分布均匀,无分层等缺陷的钼骨架,熔渗后坯料的线收缩率随CIP压力增加而逐渐降低,最佳CIP压力为160MPa;在一定范围内升高熔渗温度与延长保温时间均有助于提高合金致密度;冷等静压–溶渗法制备的高致密Mo-30Cu合金具有较好的温轧性能,有效提高了大尺寸试样的加工性能。CIP压力为160MPa压制的骨架在1350℃渗铜6h后相对密度达到99%以上,合金的温轧变形量可达到65%。
简介:雾化喷嘴是喷射成形技术的关键部件,为验证喷嘴结构对雾化性能的影响,采用计算流体动力学方法研究不同Laval喷管喉口结构、导流管锥顶角和突出长度对喷射气体流场及导流管顶端静压强(ΔP)的影响规律。结果表明在设计紧耦合Laval喷嘴中:圆角过渡式喉口形状比尖角及柱体过渡更利于获得高速气流;较小的锥顶角可以减小导流管出口静压值,但速度衰减较大;导流管突出长度在7~8mm时可以获得较好的气动效果。最后选定圆角过渡Laval形出气口形状,导流管锥顶角β=45°以及突出长度h=8mm加工雾化喷嘴并进行雾化实验,在雾化压强0.8MPa时7055合金粉末以球状或类球状形态存在,质量中径为42.3μm。
简介:以Mo、Nb、Si、Al元素粉末为原料,采用燃烧合成法制备名义成分分别为(Mo0.97Nb0.03)(Si0.97Al0.03)2、(Mo0.94Nb0.06)(Si0.97Al0.03)2、(Mo0.91Nb0.09)(Si0.97Al0.03)2与(Mo0.88Nb0.12)(Si0.97Al0.03)2等4种不同化含量的合金,研究其燃烧合成行为,分析燃烧合成过程中粉末压坯的燃烧模式、燃烧温度、燃烧波前沿蔓延速率以及产物组成。结果表明:随Nb含量增加,燃烧合成反应模式由螺旋燃烧逐渐转变为稳态燃烧。添加Nb、Al后,合金的最高燃烧温度升高,并随Nb含量增加呈现先升高后降低的变化趋势,其中(Mo0.91Nb0.09)(Si0.97Al0.03)2的燃烧温度最高,达到1924K,但燃烧波蔓延速率随Nb含量增加而逐渐降低。XRD结果表明:(Mo0.97Nb0.03)(Si0.97Al0.03)2合金主要由MoSi2构成,含有少量Mo(SiAl)2和Mo5Si3;(Mo0.94Nb0.06)(Si0.97Al0.03)2中开始出现NbSi2相,(Mo0.91Nb0.09)(Si0.97Al0.03)2和(Mo0.88Nb0.12)(Si0.97Al0.03)2合金中Mo5Si3的衍射峰强度进一步降低,而NbSi2的衍射峰略有增强,因而添加Nb有利于形成C40结构的NbSi2,同时抑制Mo5Si3的产生。SEM观察表明合金为多孔结构。
简介:采用反应磁控溅射法分别在单晶硅(100)和不锈钢基底上沉积不同W含量的Zr1-xWxN(x=0.17,0.28,0.36,0.44,0.49)复合膜,利用扫描电镜、能谱仪、X射线衍射仪、纳米压痕仪和摩擦磨损试验机研究该复合薄膜的微结构、力学性能及摩擦性能,并探讨ZrWN复合膜的摩擦机理。结果表明:当x≤0.28时,复合膜呈fcc(Zr,W)N结构;当x为0.36~0.44时,复合膜呈fcc(Zr,W)N和fccW2N结构;当x=0.49时复合膜为fcc(Zr,W)N、fccW2N结构和β-W单质。Zr1-xWxN复合膜的硬度随x增加先增大后减小,当x=0.44时达到最大值,为36.0GPa。随x增加,Zr1-xWxN复合膜的室温摩擦因数先减小后增大,摩擦表面生成的氧化物WO3对于降低摩擦因数起重要作用。
简介:采用射频磁控溅射法在医用钛表面制备羟基磷灰石(HA)涂层,研究HA涂层的形貌、物相、力学性能、细胞相容性和在机体内的组织相容性,分析其在骨修复中应用的可能性。结果表明:射频磁控溅射法制备的钛基HA生物涂层呈粗糙岛屿状结构,HA平均粒径为(40?2)nm、厚度为1.0~1.6μm的涂层力学性能最好,其纳米硬度高于11GPa,弹性模量大于136GPa;HA涂层可促进成骨细胞增殖,成骨细胞粘附于HA涂层表面并形成伪足铺展生长;植入实验动物体内4周后材料表面被结缔组织覆盖,血管形成;植入12周后,骨小梁形成,其内部可见破骨细胞;植入12周后与植入前相比,涂层的结合强度未发生显著变化。说明该HA涂层具有较高的成骨活性和稳定性,在骨修复方面具有良好的应用前景。
简介:通过拉伸试验、晶间腐蚀与应力腐蚀实验,结合金相观察和高分辨透射电镜分析,研究微量Ti和Cr对Al-Zn-Mg-Cu-Zr合金弥散相、再结晶与性能的影响。结果表明:在Al-Zn-Mg-Cu-Zr合金中,添加0.04%Ti(质量分数,下同)可使合金抑制再结晶的能力降低,从而导致合金的力学性能和抗应力腐蚀性能降低;复合添加0.04%Ti和0.04%Cr,形成含有少量Cr的Al3(Zr,Ti)弥散相,合金抑制再结晶的能力显著增强,合金在保持高强度的同时,抗应力腐蚀性能显著提高,抗拉强度为687.6MPa,屈服强度为651.4MPa,比不含Ti和Cr的合金分别提高15.3MPa和7.8MPa,应力腐蚀裂纹萌生时间由161h延长至306h。
简介:采用超高重力场燃烧合成工艺,并从500g到2500g每间隔500g依次增大超重力场加速度,制备系列TiC-TiB2凝固陶瓷。经XRD、FESEM和EDS分析,发现陶瓷显微组织均由片晶的TiB2基体相、不规则的TiC第二相及少量的Al2O3夹杂与Cr基金属相组成。增大超重力场加速度,反应熔体内部各组份之间的对流(Stokes)加强,可加快Al2O3液滴的上浮与分离,促进TiC-TiB2-Me液相成分均匀化,使陶瓷显微组织得以细化,且当超重力场加速度超过2000g时,出现TiB2片晶厚度小于1μm的超细晶组织,同时随陶瓷基体上Al2O3夹杂量降低、TiB2片晶异常长大弱化,陶瓷组织均匀性提高。经FESEM断口形貌与裂纹扩展观察,发现TiB2基体相的裂纹桥接与拔出,并耦合晶间Cr基延性相增韧构成陶瓷的复合增韧机制,且随超重力场加速度增大,陶瓷的致密性与组织均质性得以提升,不仅促进TiB2基体相裂纹桥接与拔出,而且可增大Cr基延性对陶瓷增韧的贡献,使得陶瓷弯曲强度与断裂韧性分别同时达到最大值(975±16)MPa和(16.8±1.2)MPa·m^1/2。
简介:以硝酸铟为原料,用氨水做沉淀剂,采用水解沉淀-水热法制备In2O3的前驱体In(OH)3,用扫描电镜、X射线衍射仪及激光粒度分析仪对产物的结构、形貌和粒度进行表征。结果表明,水解沉淀产物为立方相In(OH)3,呈短棒状团聚体。水热处理过程中,产物的晶型、形貌和粒度受Ostwald熟化机制和相转化机制的影响。当水热温度低于280℃时,首先发生Ostwald熟化机制,In(OH)3颗粒形貌由短棒状转变为长方体,而物相不发生变化。当水热温度高于280℃时,除发生Ostwald熟化机制外,还存在相转化机制,产物形貌先由棒状转变为长方体,接着转变为多面体,且物相由立方相的In(OH),转变为斜方相的InOOH。
简介:采用片状粉末冶金技术制备碳纳米管/铝(CNT/Al)复合材料,并研究其力学性能。首先,通过聚合物热解化学气相沉积法(PP-CVD)在微纳铝片表面原位生长碳纳米管制备CNT/Al片状复合粉末,随后对该片状复合粉末进行冷压成形、烧结致密化和挤压变形加工等,制备致密的CNT/Al复合材料块体。实验结果表明,相比铝基体,所制备的1.5%CNT/Al复合材料抗拉强度和模量分别提高了18.5%和23.7%,3.0%CNT/Al复合材料抗拉强度和模量分别提高了31.4%和74.1%,但由于铝基体的细晶强化和位错强化作用,使其塑性分别下降至4.96%和1.5%。