简介:通过真空镀铬对金刚石颗粒进行表面改性,采用放电等离子烧结法(SPS)制备改性金刚石/Cu复合材料研究金刚石的体积分数、工艺参数以及金刚石颗粒表面改性对复合材料导热性能的影响。结果表明,烧结温度、混料时间以及金刚石颗粒的体积分数都会影响材料的致密度,金刚石颗粒的体积分数还会影响材料的界面热阻,而致密度和界面热阻是影响该复合材料导热性能的2个重要因素对金刚石颗粒进行真空镀铬表面改性,可改善颗粒与铜基体的润湿性,降低界面热阻。在一定的工艺条件下,镀铬金刚石体积分数为60%时,改性金刚石/Cu复合材料具有很高的致密度,其热导率达到503.9W/(m.K),与未改性的金刚石/Cu复合材料相比,热导率提高近2倍,适合做为高导热电子封装材料。
简介:通过DSC-TG、TPR、XRD等测试手段,研究共沉淀法制备的铁钴铜复合草酸盐的热分解、煅烧和还原过程。结果表明:在氩气气氛中,铁钴铜复合草酸盐于213.05℃失去1.4个结晶水,在396.93℃直接分解成铁/钴/铜合金混合粉末;在400℃的空气气氛中铁钴铜复合草酸盐可以煅烧成铁钴铜复合金属氧化物,并且具有与四氧化三铁相同的晶体结构;在475℃的氢气还原性气氛中,铁钴铜复合金属氧化物被还原成具有FeCu4、Co3Fe7和CoFe三种物相的均匀Fe-Co-Cu合金混合粉末,由此证明铁钴铜复合草酸盐也可以通过煅烧+还原的方式制备得到铁钴铜合金混合粉末。
简介:以CVD工艺预增密至一定密度的自制刹车用炭/炭(C/C)复合材料和国外C/C复合材料刹车片为研究对象,分别采用中温沥青及高温沥青为浸渍剂,对C/C刹车片进行浸渍-炭化新工艺补充增密处理.结果表明:自制及国外C/C刹车片均具有较好的可浸渍性;可以采用沥青浸渍-炭化法高效增密;两种沥青相比,高温沥青残炭率更高,但也易产生难石墨化炭;针对整个沥青而言的宏观残炭率与只针对样品而言的实际残炭率的差距随着炭化压力提高而变小,因而,为了快速制取C/C复合材料刹车片,必须提高炭化压力;新工艺补充增密后C/C复合材料刹车片样品各项性能比增密前均有显著的提高.
简介:采用无压熔渗工艺制备1种新型的具有自润滑耐磨性能的炭纤维整体织物/炭-铜(C/C-Cu)复合材料,分别在环-块运动模式、销-盘运动模式和往复运动模式下对该材料的摩擦磨损特性进行研究,并与粉末冶金方法制备的滑板用C/Cu复合材料进行性能比较。结果表明:C/C-Cu复合材料在不同试验模式下表现出迥异的摩擦磨损特性。往复运动模式下试样表面形成完整光滑的磨屑层,摩擦因数和磨损量均分别维持在0.02和1.70mm3的较低水平,摩擦磨损性能优于C/Cu复合材料;环-块模式下试样磨损面粗糙,摩擦因数最高,达到0.25以上,磨损量最低,仅为0.75mm3与C/Cu复合材料的摩擦磨损性能相当;销-盘模式下试样的磨损量远高于其它2种摩擦模式,最高达55mm3,摩擦磨损性能比C/Cu复合材料差。
简介:以Cu-Zr混合粉末为熔渗剂,密度为1.4g/cm3的多孔C/C复合材料为坯体,采用反应熔渗法制备C/C-ZrC-Cu复合材料,研究了复合材料的组织结构及物相组成,并对复合材料组织结构的形成机理进行了分析。结果表明:熔渗剂中Zr含量不同时,制备的复合材料均主要由C,ZrC和Cu相组成。随熔渗剂中Zr含量由50%增加到70%(质量分数),制备的复合材料中Cu含量逐渐降低,熔渗剂中Zr含量为60%时复合材料中ZrC含量最高(43.2%)。C/C复合坯体内的孔隙被反应生成的ZrC相及残余Cu相充分填充,炭纤维周围存在一层较致密的ZrC层,在远离炭纤维处,ZrC颗粒与Cu相呈混合分布状态。ZrC与C和Cu均有良好的界面结合状态,在ZrC颗粒长大和粗化过程中,形成了部分含内嵌Cu晶粒的较大ZrC颗粒。
简介:采用非水溶液溶胶-凝胶法,并结合高温碳热还原法制备锂离子电池用高可逆容量的Sn-C复合负极材料,通过调节Sn源与炭源的比例及碳热还原过程中的升温制度来控制金属Sn的粒度和Sn-C复合材料的结构形态。借助XRD、EDS、SEM、循环伏安及恒流充放电测试对材料的物化性能进行表征。结果表明,当Sn源与C源质量比为80:20、还原温度为800℃时,纳米级金属Sn均匀紧密地分布在无定形热解炭基体中,形成良好的纳/微复合结构,此时复合材料性能相对最优;该复合材料在电流密度为100mA/g,首次可逆比容量为637.9mAh/g,循环30次后充电容量保持在372.5mAh/g以上,第二次循环库伦效率达到97%以上。
简介:以水热共还原法制备纳米W-30%Cu复合粉末,通过真空烧结和包套热挤压制备超细晶W-Cu复合材料,并进行后续热处理。采用X射线衍射、高分辨率透射电镜、扫描电镜等观察和分析W-30%Cu复合粉体和合金的成分及组织形貌,研究热挤压及后续退火处理对材料致密度、电导率和硬度等性能的影响。结果表明:水热产物为纳米级(10~15nm)规则的类球形结构,经煅烧及共还原后得到的W-30%Cu复合粉末粒度细小,呈特殊的W包覆Cu结构,颗粒分布均匀;复合粉末在1050℃真空烧结后相对密度只有91.5%,经热挤压后致密度提高到97.07%,布氏硬度达到223,组织细密,W相和Cu相分布均匀,钨颗粒细小(1~3μm),形成典型的钨骨架和铜网络结构。经过后续的退火处理,钨铜分布更均匀,钨粒径进一步减小,材料的致密度和电导率都更高,分别为98.82%和43.31%IACS,形成良好的综合性能指标匹配。
简介:采用粉末冶金法制备Cu/V0.97W0.03O2复合材料,通过场发射扫描电镜及能谱分析研究复合材料的表面形貌与成分组成,用X.ray衍射分析复合材料中各相在室温下的晶体结构,并利用涡流电导仪测试在变温过程中不同V0.97W0.03O2粉体含量的复合材料电导率的变化情况。结果表明:Cu/V0.97W0.03O2复合材料在0℃附近表现出电导率突变的特性,而且随复合材料中V0.97W0.03O2粉体添加量的增加,复合材料电导率突变的效果明显增加;同时,在室温下Cu/V0.97W0.03O2复合材料中V0.97W0.03O2的晶体结构与V02高温相的结构基本相同,说明在复合材料的烧结过程中Cu与V0.97W0.03O2的晶体结构没有相互影响,但V0.97W0.03O2有少量发生分解。
简介:以不同纤维体积分数(21%、26%、32%)、不同布毡质量比(3:1,2:1,1:1)的针刺整体毡为预制体,采用化学气相渗透法(Chemicalvaporinfiltration,CVI)制备平板炭/炭(C/C)复合材料,研究预制体结构对CVI致密化过程的影响。结果表明:随纤维体积分数增加,整体毡的增密速率及最终密度都逐渐减小;布毡比对增密速率及最终密度影响很小。材料网胎中热解炭圆壳厚度沿材料厚度方向呈内部小、两侧大的对称分布;增加纤维体积分数或增加布毡比,材料内部的热解炭增厚程度随之减小。纤维体积分数为21%的预制体最适宜采用CVI工艺进行增密,增密80h密度达到1.69g/cm3,热解炭生长均匀。
简介:采用天然岫岩玉和人工合成含镧化合物为原料,通过高能球磨制备粒径小于2μm的镧/蛇纹石复合粉体,分析该复合粉体的热力学及结构稳定性,评价其作为润滑添加剂的摩擦学性能,并探索其减摩抗磨机理。结果表明:镧的加入能降低蛇纹石微粉的热力学及结构稳定性,使蛇纹石的羟基脱除速率更快、反应更彻底。复合微粉较单一的蛇纹石微粉具有更好的减摩抗磨性能,在CD15w/40柴油机润滑油中添加0.5%的镧/蛇纹石复合微粉时,摩擦因数和盘片磨损体积分别较基础油降低约34.2%和68.8%;磨损表面致密光滑,复合粉体颗粒直接参与摩擦界面复杂的物理和化学作用,诱发形成富含Si-O结构的氧化膜,该氧化膜与有机残留物产生正协同作用,提高摩擦副的磨损抗力及润滑性能,显著降低摩擦磨损。
简介:以微米级蓝钨(WO2.9)、四氧化三钴(Co3O4)和炭黑(C)为原料,采用真空原位还原碳化反应制备超细WC-Co复合粉末,经过真空烧结得到WC-Co合金块体。利用扫描电镜、X射线衍射仪观察和分析复合粉末及合金显微形貌及物相组成,研究原料粉末中配碳量对WC-Co复合粉及合金物相与力学性能的影响。结果表明:所得平均粒径为300nm的超细WC-Co复合粉末的主相均为WC和Co相,含有少量的η相(Co3W3C);原料粉末中配碳量(质量分数)为16.69%较为合适,此时可获得物相纯净、平均晶粒尺寸470nm的超细晶WC-Co硬质合金,合金的横向断裂强度为2464MPa;原料粉末中配碳量为16.85%时,合金中存在少量的游离碳,横向断裂强度只有1946MPa。
简介:在MM-1000型摩擦试验机上,对炭/炭复合材料分别在氮气和空气中模拟正常着陆能量条件下的摩擦磨损行为进行测试。结果表明:在氮气中,炭/炭复合材料的摩擦因数较高,达到0.32~0.4,磨损率较低,质量磨损率为18mg/次,线性磨损率为1.4μm/次;在空气中,材料的摩擦因数较低,为0.2~0.3,但磨损率较高,质量磨损率为48mg/次,线性磨损率为3.8μm/次。磨损表面及磨屑的SEM形貌表明:在空气中,材料摩擦表面易形成炭纤维、基体炭相互脱离的磨屑,其主要磨损机制为氧化磨损;在氮气中,则有纤维与基体炭连接良好、大尺寸的磨屑出现,主要磨损机制为磨粒磨损和粘着磨损。
简介:采用反应磁控溅射法分别在单晶硅(100)和不锈钢基底上沉积不同W含量的Zr1-xWxN(x=0.17,0.28,0.36,0.44,0.49)复合膜,利用扫描电镜、能谱仪、X射线衍射仪、纳米压痕仪和摩擦磨损试验机研究该复合薄膜的微结构、力学性能及摩擦性能,并探讨ZrWN复合膜的摩擦机理。结果表明:当x≤0.28时,复合膜呈fcc(Zr,W)N结构;当x为0.36~0.44时,复合膜呈fcc(Zr,W)N和fccW2N结构;当x=0.49时复合膜为fcc(Zr,W)N、fccW2N结构和β-W单质。Zr1-xWxN复合膜的硬度随x增加先增大后减小,当x=0.44时达到最大值,为36.0GPa。随x增加,Zr1-xWxN复合膜的室温摩擦因数先减小后增大,摩擦表面生成的氧化物WO3对于降低摩擦因数起重要作用。
简介:以钴粉、氧化钇和草酸铵为原料,采用均匀沉淀法制备Co-Y2O3的前驱体,经氢还原后得到Co-Y2O3复合粉末,研究反应溶液中CoCl2浓度、YCl3与CoCl2的物质的量比n(YCl3)/n(CoCl2)以及表面活性剂对Co-Y2O3复合粉末形貌和粒度的影响。结果表明:YCl3与CoCl2的物质的量比以及表面活性剂对Co-Y2O3复合粉的形貌都有很大影响。当n(YCl3)/n(CoCl2)的值由0增加到0.014时,复合粉形貌由棒状转变为梅花状;当n(YCl3)/n(CoCl2)进一步增大到0.040和0.078时,复合粉分别为絮状和粗棒状;向n(YCl3)/n(CoCl2)为0.014的混合溶液中加入十二烷基硫酸钠时,复合粉末形貌由梅花形转变为球形。CoCl2的浓度c(CoCl2)对复合粉末粒度和分散性有较大影响。随c(CoCl2)从0.2mol/L增加到0.5mol/L,复合粉末的平均粒度由7μm减小到4μm,并且粉末的分散性更好;当c(CoCl2)增加到0.8mol/L时,粉末的平均粒度增大到10μm,粉末的分散性变差。
简介:基于轻质、高强和耐磨等诸多优势,铝基碳化硼复合材料已成为集结构/功能一体化的新型材料。本文采用粉末冶金及轧制方法,制备出厚度3.5mm、碳化硼质量分数为33%的B4C/Al复合材料板材,并对其疲劳性能和断裂机制进行分析。在1×107循环次数下,铝基碳化硼复合材料板材的疲劳强度达到110MPa。采用SEM对疲劳断口进行观察,结果表明B4C/Al复合材料疲劳断口可清楚的看到裂纹的萌生、扩展和失稳断裂的典型特征,但存在多种形式的疲劳启裂源。疲劳裂纹扩展路径取决于裂纹尖端塑性区的半径和B4C颗粒的间距大小,当增强颗粒的间距小于塑性区半径时,裂纹主要沿着颗粒的连接界面或断裂的碳化硼颗粒扩展,当增强颗粒的间距大于塑性区半径时,有利于裂纹尖端钝化,减缓裂纹的扩展和方向改变。
简介:添加无机填料可改善硅橡胶烧蚀陶瓷残余物的强度,从而加强其结构完整性和高温稳定性。以甲基乙烯基硅橡胶为基体,以黏土矿物为填料制备硅橡胶/黏土可瓷化高分子复合材料,利用TG/DSC等热分析技术研究该材料的热稳定性。结果表明,添加黏土矿物可以改善硅橡胶的热稳定性,使其分解温度提高100℃左右。通过XRD分析和SEM观察发现:除少量杂质相之外,硅橡胶经600℃烧蚀后的物相主要为方石英,1200℃烧蚀后的物相为莫来石和方石英,微观形貌特征分别为不致密絮状结构(600℃烧蚀后)和液相桥连的多孔结构(1200℃烧蚀后)。根据试验结果分析复合材料的瓷化机理。
简介:采用真空无压熔渗工艺制备炭纤维整体织物炭/炭-铜(C/C—Cu)复合材料,在改装的QDM150型干式摩擦性能试验机上进行载流条件下的干滑动模拟实验,研究电流及紫铜对偶盘转速对C/C—Cu复合材料摩擦磨损性能的影响规律。利用扫描电镜观察分析磨损表面及磨屑形貌。结果表明:C/C—Cu复合材料的摩擦因数随电流增大而减小,质量磨损率随电流增大而增大,接触表面的化学反应使得正极的磨损大于负极;复合材料的摩擦因数和磨损率均随着转速增大而降低。扫描电镜观察分析发现正极生成的磨屑主要以片状剥落层的形式存在,而负极的磨屑细小松散,呈等轴状。