简介:本文提出一个新的预条件子,用共轭梯度法求解对称正定的Teoplitz型线性方程组.该预处理子构造简单,易于实施快速傅里叶变换.理论和数值实验显示,我们的预处理子与T.Chan预处理子收敛性相近.
简介:考虑由磁流体力学方程组控制的二维不可压缩流体的初边值问题,在边界光滑的有界区域中,当(u0,B0)∈((Wm,p(Ω))2×Wm,p(Ω))时,利用Galerkin方法和先验估计,得到了相应的初边值问题存在唯一的弱解(u(.,t),B(.,t))∈((Wm,,(Ω))×Wm,p(Ω)),并证明了弱解对初值(U0,B0)具有连续依赖性.
简介:本文研究Toeplitz+Hankel线性方程组的预处理迭代解法.我们提出了几个新的预条件子,并分析了预处理矩阵的谱性质,当生成函数在Wiener类中时,预处理矩阵的特征值聚集在1附近.数值实验表明该预处理子比文‘’’中的预处理子更有效.
简介:在介绍B.VANROOTSELAAR的解方程组x′=Ax的一种新方法的基础上,对矩阵F(0)求法作了补充,对照以往通常的解法,分析了它的优越性.文章用完全开放性的Maple语言程序在计算机上实现了这种方法的应用,并通过生动的例子说明了同样是借助计算机强大的计算功能,新的解法在速度上要提高上百倍,更有实用价值.