简介:文章考察了相邻双侧边盖驱动方腔流动(即上壁面向右运动和左侧壁面向下运动)的三维线性整体稳定性.首先,采用Taylor—Hood有限元方法并经由Newton迭代过程计算得到双侧边盖驱动方腔流动的二维稳态基本流.其次,Taylor—Hood有限元在ChebyshevGauss配置点上进行离散,同时Gauss配置点也可以用于线性稳定性方程的高阶有限差分格式离散.然后,离散得到的矩阵形式的广义特征值问题可以结合shift-and—invert算法采用隐式重启Amoldi方法计算.最后,通过对线性稳定性方程特征值的计算,发现了一个最不稳定的驻定模态和两对对称行波模态.最不稳定的三维驻定模态的临界Reynolds数为Ree=261.5,远远小于二维不稳定的临界Revnolds数Ree2d=1061.7.通过画出这3类三维不稳定模态的流向扰动速度和扰动涡量的空间等值面图像,可以发现不稳定扰动位于稳态基本流的两个主涡区域,因此可以认为主涡区域是三维扰动失稳的主要能量来源地.
简介:研究了Banach空间中非线性混合型微分-积分方程初值问题u'=f(t,u,Tu,Su),u(0)=x0的整体解,完全没有要求f的任何增性,利用Monch不动点定理和比较结果得到了初值问题整体解的存在性和唯一解,并且给出了一致收敛于唯一解的迭代序列,改进推广和统一了已有的许多结果.
简介:H_1,H_2,H_3是实希尔伯特空间,CH_1,QH_2是两个非空闭凸子集,AH_1→H_3,B:H_2→H_3是两个有界线性算子.我们的兴趣是解决下面的问题:找x∈C,y∈Q使得Ax=By.Moudafi提出了同步迭代算法(SIM)来解决分裂等式问题.为了利用同步迭代算法(SIM),在计算步长时需要知道有界线性算子的范数,这个范数的数值计算中难以实现.本文的主要目的是介绍一种选择步长的方式使得同步迭代算法的完成不需要任何算子的范数.同时,松弛的同步迭代算法也被提出.最后,论文通过数值试验得出这种步长的选择方法使得并行迭代算法收敛更快.