简介:本文运用Krasnoselskii和Schauder不动点定理,得到了一类分数阶微分方程多点边值问题解的存在性.
简介:讨论了一类非线性分数阶微分方程三点边值问题解的存在性.微分算子是Riemann.Liouville导算子并且非线性项依赖于低阶分数阶导数.通过将所考虑的问题转化为等价的Fredholm型积分方程,利用Schauder不动点定理获得该三点边值问题至少存在一个解.
简介:本文中,我们对一类推广型多线性分数次积分算子TΩ,lA_1,A_2,…,A_t进行讨论,得出它是从L~(q1)空间到L~(q2)空间的有界性,进而证明了此算子及其变形算子均是MK_(α,λ)(p1,q1)空间到MK_(α,λ)(p2,q2)空间也是连续的.
简介:本文给出复微分方程的α-形式解的概念,并用weyl型分数阶积分给出形如t^2z^11(t)-(bt+c)z1(t)+βz(t)=0的复微分方程的一种α-负幂解形式,进而得到这种方程有多项式解的充分必要条件.