简介:[目的]探讨关系和谐、自我建构与心理幸福感之间的关系。[方法]采用中学生自我建构量表、总体幸福感量表以及关系和谐量表对790名中学生进行了调查。[结果](1)中学生的心理幸福感普遍高于全国常模,且在家庭所在地(t=3.67,P〈0.001)和年级上(t=15.63,P〈0.001)存在显著性差异。(2)自我建构与心理幸福感、关系和谐两两之间呈显著正相关(r==0.35~0.44,p〈0.01);(3)采用Amos17.0进行结构方程模型拟合,发现各项拟合指标良好:χ^2/df=3.635,NFI=0.996,NNFI=0.982,CFI=0.997,RMSEA=0.061,关系和谐的中介效应显著(P〈0.001),关系和谐在中学生自我建构与心理幸福感之间起部分中介作用,中介效应占总效应的24.9%。[结论]自我建构既可以直接影响中学生心理幸福感,也可以通过关系和谐间接影响心理幸福感。
简介:为提高无人车行驶过程中前方车辆检测的准确性和实时性,提出了基于激光雷达(LIghtDetectionAndRanging,LIDAR)深度信息和视觉方向梯度直方图(HistogramsofOrientedGradients,HOG)特征的车辆识别和跟踪方法。目标首次进入视野时,聚类处理激光雷达深度信息并确定假设目标的候选区域,采用车辆尾部的HOG特征对假设目标进行验证。在HOG特征验证前,基于最小二乘支持向量机(LeastSquaresSupportVectorMachine,LS-SVM)算法对样本集HOG特征进行训练学习,生成车辆分类器模型。对于验证后的目标车辆,采用激光雷达获取的深度信息对目标车辆进行持续跟踪。构建了2种车辆模型,结合最小二乘直线拟合方法提取出车辆特征,生成目标模型。同时,提出了基于多特征马氏距离的目标关联代价方程,实现了多目标的关联;完成了基于卡尔曼滤波的车辆状态滤波和位置估计,更新了跟踪器模型。通过有效的管理策略,实现了目标跟踪的3个状态:1)初始化模型的生成;2)跟踪过程中跟踪器的更新与预测;3)目标驶离视野时跟踪器的删除。最后,通过试验验证了跟踪算法的有效性。